F.softmax()的用法

F.softmax()的用法

>>> import torch
>>> import torch.nn.functional as F
>>> logits = torch.rand(2,2)
>>> pred = F.softmax(logits, dim=1)
>>> logits
tensor([[0.4140, 0.4571],
        [0.9392, 0.6504]])
>>> pred
tensor([[0.4892, 0.5108],
        [0.5717, 0.4283]])
>>>

可以看出:它是按照行来一行一行做归一化的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值