四种最短路求法-Bellman&spfa&Dijkstra&Warshall

单源一般都是对边操作,多源一般对点操作

Bellman

适用于

  • 单源最短路
  • 复杂度要求不高或可能有负边

复杂度O(V E)
n是边的数量,k是顶点数量
直接用edge来储存关系,因为每次都是将所有的边拿来更新一次

/*
 * @Description: 
 * @Autor: Kadia
 * @Date: 2020-05-18 12:13:37
 * @LastEditors: Kadia
 * @connect: vx:ccz1354 qq:544692713
 * @LastEditTime: 2020-06-15 23:22:35
 */
#include <bits/stdc++.h>

using namespace std;
#define INF 0x3f3f3f3f
struct edge
{
    int from;
    int to;
    int cost;
}city[50];
int d[50];
int main()
{
    int n,k;
    cin >> n >> k;
    int a,b,x;
    for (int i = 1; i <= n; i++)
    {
        cin >> city[i].from >> city[i].to >> city[i].cost;
    }
    for(int i=1;i<=n;i++)
        d[i]=INF;
    d[1]=0;
    for(int i=1;i<k;i++)
    {
        for(int j=1;j<=n;j++)
        {
            d[city[j].to]=min(d[city[j].to],d[city[j].from]+city[j].cost);
        }
    }
    cin >> x;
    cout << d[x] << endl ;
    return 0;
}

spaf-改良版Bellman

用一个queue记录上次更新过的点,没有更新多的点就不用重复去松弛了

/*
 * @Description: 
 * @Autor: Kadia
 * @Date: 2020-07-17 11:28:37
 * @LastEditors: Kadia
 * @Connect: vx:ccz1354 qq:544692713
 * @LastEditTime: 2020-07-17 11:51:52
 */ 
//spaf
#include <bits/stdc++.h>
#define inf 2147483647
using namespace std;
struct _edge
{
    int from;
    int to;
    int cost;
};
int vis[10005];
int len[10005];
int main()
{
    ios::sync_with_stdio(false);
    int n,m,s;
    cin >> n >> m >> s;
    vector<_edge>save[10005];
    int f,t,c;
    for(int i=1;i<=m;i++)
    {
        cin >> f >> t >> c;
        save[f].push_back(_edge{f,t,c});
    }
    queue<int>que;
    for(int i=1;i<=n;i++)
        len[i]=inf;
    len[s]=0;
    que.push(s);
    vis[s]++;
    while(que.size())
    {
        int v=que.front();
        que.pop();
        vis[v]--;
        for(int i=0;i<(int)save[v].size();i++)
        {
            _edge e=save[v][i];
            if(len[e.to]>len[v]+e.cost)
            {
                len[e.to]=len[v]+e.cost;
                if(!vis[e.to])
                {
                    vis[e.to]++;
                    que.push(e.to);
                }
            }
        }
    }
    for(int i=1;i<=n;i++)
    {
        if(i==1)
            cout << len[i] ;
        else
            cout << " " << len[i] ;
    }
    cout << endl ;
    return 0;
}

Dijkstra

适用于

  • 单源最短路
  • 没有负边的情况

复杂度O((E+N)logN)

n是边的数量
用存edge的vector的G[X]来表示x出发的路,因为与第一种不同,不需要每一个边都遍历,但要用一个中间点出发的点和费用,所以用vector来储存

/*
 * @Description: 
 * @Autor: Kadia
 * @Date: 2020-05-18 12:13:37
 * @LastEditors: Kadia
 * @connect: vx:ccz1354 qq:544692713
 * @LastEditTime: 2020-06-15 23:26:04
 */
#include <bits/stdc++.h>

using namespace std;
#define INF 0x3f3f3f3f
struct edge
{
    int from;
    int to;
    int cost;
} ;
int d[50];
vector<edge> G[50];
int main()
{
    int n;
    cin >> n ;
    int a,b,x;
    for (int i = 1; i <= n; i++)
    {
        cin >> a >> b >> x;
        G[a].push_back(edge{a,b,x});
    }
    for(int i=1;i<=n;i++)
        d[i]=INF;
    d[1]=0;
    priority_queue<pair<int,int>,vector<pair<int,int> >, greater<pair<int,int> > >que;
    que.push(pair<int,int>(0,1));
    while(que.size())
    {
        pair<int,int>tmp=que.top();
        que.pop();
        int v=tmp.second;
        if(d[v]!=tmp.first)
            continue;
        for(int i=0;i<G[v].size();i++)
        {
            edge e=G[v][i];
            if(d[e.to]>d[v]+e.cost)
            {
                d[e.to]=d[v]+e.cost;
                que.push(pair<int,int>(d[e.to],e.to));
            }
        }
    }
    cin >> x;
    cout << d[x] << endl ;
    return 0;
}

Warshall

适用于

  • 求多源最短路

复杂度O(V V V)

/*
 * @Description: 
 * @Autor: Kadia
 * @Date: 2020-06-15 15:03:12
 * @LastEditors: Kadia
 * @connect: vx:ccz1354 qq:544692713
 * @LastEditTime: 2020-06-15 15:17:20
 */ 
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
struct _node
{
    int x;
    int y;
}node[105];
double ma[105][105];
int main()
{
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(i==j)
                    ma[i][j]=0;
                else
                    ma[i][j]=INF;
            }
        }
    	for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                for(int k=1;k<=n;k++)
                {
                    ma[j][k]=min(ma[j][k],ma[j][i]+ma[i][k]);
                }
            }
        }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值