Description
Bessie has moved to a small farm and sometimes enjoys returning to
visit one of her best friends. She does not want to get to her old
home too quickly, because she likes the scenery along the way. She has
decided to take the second-shortest rather than the shortest path. She
knows there must be some second-shortest path.The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads,
each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently
numbered 1…N. Bessie starts at intersection 1, and her friend (the
destination) is at intersection N.The second-shortest path may share roads with any of the shortest
paths, and it may backtrack i.e., use the same road or intersection
more than once. The second-shortest path is the shortest path whose
length is longer than the shortest path(s) (i.e., if two or more
shortest paths exist, the second-shortest path is the one whose length
is longer than those but no longer than any other path).Input
Line 1: Two space-separated integers: N and R Lines 2…R+1: Each line
contains three space-separated integers: A, B, and D that describe a
road that connects intersections A and B and has length D (1 ≤ D ≤
5000)Output
Line 1: The length of the second shortest path between node 1 and node
N Sample Input样例
in
4 4
1 2 100
2 4 200
2 3 250
3 4 100
out
450
/*
* @Description:
* @Autor: Kadia
* @Date: 2020-05-18 12:13:37
* @LastEditors: Kadia
* @Connect: vx:ccz1354 qq:544692713
* @LastEditTime: 2020-07-06 17:34:49
*/
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#define inf 0x3f3f3f3f
using namespace std;
struct _edge
{
int from;
int to;
int cost;
};
int len1[10005];
int len2[10005];
int main()
{
int n,r;
cin >> n >> r;
int x,y,c;
vector<_edge>save[10005];
for(int i=1;i<=r;i++)
{
cin >> x >> y >> c;
_edge a,b;
a.from=x,a.to=y,a.cost=c;
b.from=y,b.to=x,b.cost=c;
save[x].push_back(a);
save[y].push_back(b);
}
fill(len1+1,len1+n+1,inf);
fill(len2+1,len2+n+1,inf);
priority_queue<pair<int,int>,vector<pair<int,int> >,greater<pair<int,int> > > que;
len1[1]=0;
que.push(pair<int,int>(0,1));
while(que.size())
{
int l=que.top().first;
int w=que.top().second;
que.pop();
if(l>len2[w])
continue;
if(l<=len1[w])
len1[w]=l;
else
len2[w]=l;
for(int i=0; i <(int)save[w].size();i++)
{
_edge e=save[w][i];
if(len1[e.to]>=l+e.cost)
{
len1[e.to]=l+e.cost;
que.push(pair<int,int>(len1[e.to],e.to));
}
else if(len2[e.to]>l+e.cost)
{
len2[e.to]=l+e.cost;
que.push(pair<int,int>(len2[e.to],e.to));
}
}
}
cout << len2[n] << endl ;
return 0;
}