BZOJ3221 [Codechef FEB13] Obserbing the tree树上询问

16 篇文章 0 订阅
7 篇文章 0 订阅

闲来无事水一发毒瘤题

链剖+主席树即可

区间加一个等差数列标记合并的时候把首项和公差都加起来就好了

因为区间修改所以要标记永久化,除了标记以外还要记录子树内因更改所增加的和

#include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<bitset>
using namespace std;
#define MAXN 100010
#define MAXM 20000010
#define ll long long
#define INF 1000000000
#define MOD 1000000007
#define eps 1e-8
struct vec{
	int to;
	int fro;
};
vec mp[MAXN*2];
int tai[MAXN],cnt;
int rt[MAXN];
ll sum[MAXM],st[MAXM],c[MAXM];
int son[MAXM][2];
int fa[MAXN],Son[MAXN],tp[MAXN],dfn[MAXN],dep[MAXN],siz[MAXN],tim;
int tot;
int TOT;
int now;
int n,m;
ll la;
inline void be(int x,int y){
	mp[++cnt].to=y;
	mp[cnt].fro=tai[x];
	tai[x]=cnt;
}
inline void bde(int x,int y){
	be(x,y);
	be(y,x);
}
void dfs1(int x){
	int i,y;
	siz[x]=1;
	dep[x]=dep[fa[x]]+1;
	for(i=tai[x];i;i=mp[i].fro){
		y=mp[i].to;
		if(!siz[y]){
			fa[y]=x;
			dfs1(y);
			siz[x]+=siz[y];
			if(siz[y]>siz[Son[x]]){
				Son[x]=y;
			}
		}
	}
}
void dfs2(int x,int z){
	int i,y;
	dfn[x]=++tim;
	tp[x]=z;
	if(Son[x]){
		dfs2(Son[x],z);
		for(i=tai[x];i;i=mp[i].fro){
			y=mp[i].to;
			if(!dfn[y]){
				dfs2(y,y);
			}
		}
	}
}
int lca(int x,int y){
	while(tp[x]!=tp[y]){
		if(dep[tp[x]]<dep[tp[y]]){
			swap(x,y);
		}
		x=fa[tp[x]];
	}
	return dep[x]<dep[y]?x:y;
}
void change(int &x,int xx,int y,int z,int l,int r,ll ts,ll tc){
	x=++tot;
	memcpy(son[x],son[xx],sizeof(son[x]));
	sum[x]=sum[xx];
	st[x]=st[xx];
	c[x]=c[xx];
	if(y==l&&z==r){
		st[x]+=ts;
		c[x]+=tc;
		return ;
	}
	sum[x]+=(ts+ts+tc*(r-l))*(r-l+1)/2;
	int mid=y+z>>1;
	if(r<=mid){
		change(son[x][0],son[xx][0],y,mid,l,r,ts,tc);
	}else if(l>mid){
		change(son[x][1],son[xx][1],mid+1,z,l,r,ts,tc);
	}else{
		change(son[x][0],son[xx][0],y,mid,l,mid,ts,tc);
		change(son[x][1],son[xx][1],mid+1,z,mid+1,r,ts+(mid-l+1)*tc,tc);
	}
}
ll ask(int x,int y,int z,int l,int r){
	ll re=(st[x]+(l-y)*c[x]+st[x]+(r-y)*c[x])*(r-l+1)/2;
	if(y==l&&z==r){
		return re+sum[x];
	}
	int mid=y+z>>1;
	if(r<=mid){
		return re+ask(son[x][0],y,mid,l,r);
	}else if(l>mid){
		return re+ask(son[x][1],mid+1,z,l,r);
	}else{
		return re+ask(son[x][0],y,mid,l,mid)+ask(son[x][1],mid+1,z,mid+1,r);
	}
}
void tochange(ll ts,ll tc,int x,int y){
	int l=lca(x,y);
	ll xx=0,xy=dep[x]+dep[y]-dep[l]*2+1+1;
	while(tp[x]!=tp[l]){
		xx+=dep[x]-dep[tp[x]]+1;
		change(rt[now],rt[now],1,n,dfn[tp[x]],dfn[x],ts+(xx-1)*tc,-tc);
		x=fa[tp[x]];
	}
	while(tp[y]!=tp[l]){
		xy-=dep[y]-dep[tp[y]]+1;
		change(rt[now],rt[now],1,n,dfn[tp[y]],dfn[y],ts+(xy-1)*tc,tc);
		y=fa[tp[y]];
	}
	xx++;
	xy--;
	if(dep[x]<dep[y]){
		change(rt[now],rt[now],1,n,dfn[x],dfn[y],ts+(xx-1)*tc,tc);
	}else{
		change(rt[now],rt[now],1,n,dfn[y],dfn[x],ts+(xy-1)*tc,-tc);
	}
}
ll toask(int x,int y){
	ll re=0;
	while(tp[x]!=tp[y]){
		if(dep[tp[x]]<dep[tp[y]]){
			swap(x,y);
		}
		re+=ask(rt[now],1,n,dfn[tp[x]],dfn[x]);
		x=fa[tp[x]];
	}
	if(dep[x]>dep[y]){
		swap(x,y);
	}
	re+=ask(rt[now],1,n,dfn[x],dfn[y]);
	return re;
}
int main(){
	int i;
	ll x,y;
	ll ts,tc;
	scanf("%d%d",&n,&m);
	char o[2];
	for(i=1;i<n;i++){
		scanf("%d%d",&x,&y);
		bde(x,y);
	}
	dfs1(1);
	dfs2(1,1);
	while(m--){
		scanf("%s",o);
		if(o[0]=='c'){
			scanf("%lld%lld%lld%lld",&x,&y,&ts,&tc);
			x^=la;
			y^=la;
			rt[++TOT]=rt[now];
			now=TOT;
			tochange(ts,tc,x,y);
		}
		if(o[0]=='q'){
			scanf("%lld%lld",&x,&y);
			x^=la;
			y^=la;
			printf("%lld\n",la=toask(x,y));
		}
		if(o[0]=='l'){
			scanf("%lld",&x);
			x^=la;
			now=x;
		}
	}
	return 0;
}

/*
5 7
1 2
2 3
3 4
4 5
c 2 5 2 3
c 3 4 5 10
q 1 3
l 13
q 13 15
l 6
q 6 4

*/


题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值