AutoGen学习笔记系列(十四)Advanced - Serializing Components

这篇文章瞄的是AutoGen官方教学文档 Advanced 章节中的 Serializing Components 篇章,介绍了如何对组件进行序列化,包括终止条件AgentTeam

  • 官网链接:https://microsoft.github.io/autogen/stable/user-guide/agentchat-user-guide/serialize-components.html ;

【注意】:无论是序列化反序列化,在加载配置时必须与保存时对象的结构一致,这里的保存和加载其实是对 配置 进行保存和加载,而不是对这个实例进行操作。


Serializing Components

AutoGen提供了一个 Component 配置类,定义了将组件序列化和反序列化的规范,通过使用函数 .dump_component().load_component() 来实现这两个功能。就我个人而言序列化和反序列化的最常见的作用就是分享实例,可以将实例整体压缩到很小的体积。

微软在这里写了以下三个警告:

  • 序列化与反序列化仅能用来加载 可信赖 的组件;
  • 每个组件都实现了序列化与反序列化的逻辑,如何生成声明性规范以及如何将其转换回对象;
  • 在某些情况下序列化与反序列化后可能包含代码,因此仅用来加载 可信赖 的组件;

这里之所以强调 可信赖 是因为一旦进行反序列化加载到内存中后,具体配置是看不见的,除非再将配置序列化到本地进行内容对比。

【注意】因为这里的序列化和反序列化函数返回的是 Component 而非真正意义上的 json,所以需要我们自己手动进行转换,下面这段代码在本小节中所有示例中都通用,运行demo时只需要将其复制粘贴到指定位置即可:

from typing import Any
import json

#------------------------------------------------------#
# 自定义转化类
class CustomJSONEncoder(json.JSONEncoder):
    def default(self, obj):
        if hasattr(obj, "__dict__"):  # 处理对象类型
            return obj.__dict__  
        return super().default(obj)  # 让 JSONEncoder 处理其余情况

#------------------------------------------------------#
# 将json保存到本地的函数
def save_json(data: Any, filename: str) -> None:
    try:
        with open(filename, "w", encoding="utf-8") as file:
            json.dump(data, file, indent=4, ensure_ascii=False, cls=CustomJSONEncoder)
        print(f"数据成功保存到 {filename}")
    except Exception as e:
        print(f"保存 JSON 文件时出错: {e}")
 
 
#------------------------------------------------------#
# 从本地加载json的函数
def load_json(filename: str) -> None:
    try:
        with open(filename, "r", encoding="utf-8") as file:
            data = json.load(file)
        print(f"数据成功从 {filename} 加载")
        return data
    except FileNotFoundError:
        print(f"错误: 文件 {filename} 不存在")
    except json.JSONDecodeError:
        print(f"错误: 无法解析 {filename} 中的 JSON 数据")
    except Exception as e:
        print(f"加载 JSON 文件时出错: {e}")

Termination Condition Example

这个demo中展示了如何将终止条件 Termination Condition 导出dict 或者 json 格式的数据,我在官网代码的基础上添加了本地IO的操作以更好模拟导出与加载:

  • 导出json:
import json
from typing import Any

from autogen_agentchat.conditions import MaxMessageTermination, StopMessageTermination

#------------------------------------------------------#
# 将 [Serializing Components] 的保存与加载代码粘贴到此处
#------------------------------------------------------#
# 定义两个终止条件并将其进行序列化
max_termination = MaxMessageTermination(5)
stop_termination = StopMessageTermination()

or_termination = max_termination | stop_termination

or_term_config = or_termination.dump_component()
print("Config: \n", or_term_config.model_dump_json())

save_json(or_term_config, "./termination.json")

运行结果如下:

$ python demo.py

在这里插入图片描述

  • 导入json:
    【注意】:加载时需要保证 类型相同,配置会在加载后修改成本地文件中的指定值
import json

from autogen_agentchat.conditions import MaxMessageTermination, StopMessageTermination

#------------------------------------------------------#
# 将 [Serializing Components] 的保存与加载代码粘贴到此处
#------------------------------------------------------#

# Step1. 定义一个相同结构的终止条件但配置不同
or_termination = MaxMessageTermination(10) | StopMessageTermination()
print(or_termination)
print(or_termination.dump_component())
print("-" * 50)

#------------------------------------------------------#
# Step2. 从本地文件中加载这个配置并打印
new_or_termination = or_termination.load_component(or_term_config)
print(new_or_termination.dump_component())

运行结果如下:

$ python demo.py

在这里插入图片描述

其整个交互的内容termination.json如下:

{
    "provider": "autogen_agentchat.base.OrTerminationCondition",
    "component_type": "termination",
    "version": 1,
    "component_version": 1,
    "description": null,
    "label": "OrTerminationCondition",
    "config": {
        "conditions": [
            {
                "provider": "autogen_agentchat.conditions.MaxMessageTermination",
                "component_type": "termination",
                "version": 1,
                "component_version": 1,
                "description": "Terminate the conversation after a maximum number of messages have been exchanged.",
                "label": "MaxMessageTermination",
                "config": {
                    "max_messages": 5,
                    "include_agent_event": false
                }
            },
            {
                "provider": "autogen_agentchat.conditions.StopMessageTermination",
                "component_type": "termination",
                "version": 1,
                "component_version": 1,
                "description": "Terminate the conversation if a StopMessage is received.",
                "label": "StopMessageTermination",
                "config": {}
            }
        ]
    }
}

Agent Example

和终止条件一样,Agent也可以进行序列化,但要注意 0.4.7 这个版本目前 不支持tool序列化

AssistantAgent 保存配置

from autogen_agentchat.agents import AssistantAgent, UserProxyAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
import os, json
from typing import Any

#------------------------------------------------------#
# 将 [Serializing Components] 的保存与加载代码粘贴到此处
#------------------------------------------------------#
os.environ["OPENAI_API_KEY"] = "你的OpenAI API Key"

model_client = OpenAIChatCompletionClient(
    model="gpt-4o",
)
agent = AssistantAgent(
    name="assistant",
    model_client=model_client,
    handoffs=["flights_refunder", "user"],
    system_message="Use tools to solve tasks.",
)
user_proxy = UserProxyAgent(name="user")

user_proxy_config = user_proxy.dump_component()  # dump component
print(user_proxy_config.model_dump_json())

# 保存
save_json(user_proxy_config, "./termination.json")

运行结果如下:

$ python demo.py

在这里插入图片描述

AssistantAgent 加载配置

from autogen_agentchat.agents import AssistantAgent, UserProxyAgent
from autogen_ext.models.openai import OpenAIChatCompletionClient
import os, json
from typing import Any

#------------------------------------------------------#
# 将 [Serializing Components] 的保存与加载代码粘贴到此处
#------------------------------------------------------#
os.environ["OPENAI_API_KEY"] = "你的OpenAI API Key"

model_client = OpenAIChatCompletionClient(
    model="gpt-4o",
)
agent = AssistantAgent(
    name="assistant",
    model_client=model_client,
    handoffs=["flights_refunder", "user"],
    system_message="Use tools to solve tasks.",
)
user_proxy = UserProxyAgent(name="user")

# 加载
user_proxy_config = load_json("./termination.json")
up_new = user_proxy.load_component(user_proxy_config)  # load component
print(up_new.dump_component())

运行结果如下:

$ python demo.py

在这里插入图片描述

MultimodalWebSurfer

对于上一篇文章提到的 MultimodalWebSurfer Agent一样,可以用下面的方式对配置进行保存和加载:

from autogen_ext.agents.web_surfer import MultimodalWebSurfer
from autogen_ext.models.openai import OpenAIChatCompletionClient
import os
os.environ["OPENAI_API_KEY"] = "你的OpenAI API Key"

#------------------------------------------------------#
# 将 [Serializing Components] 的保存与加载代码粘贴到此处
#------------------------------------------------------#

model_client = OpenAIChatCompletionClient(
    model="gpt-4o",
)
agent = MultimodalWebSurfer(
    name="web_surfer",
    model_client=model_client,
    headless=False,
)

# 保存配置
web_surfer_config = agent.dump_component()  
save_json(user_proxy_config, "./agents.json")

# 加载配置
web_surfer_config = load_json("./agents.json")
agent.load_component(web_surfer_config)

运行结果如下:

$ python demo.py

在这里插入图片描述


Team Example

Team的操作流程基本一致:

from autogen_agentchat.agents import AssistantAgent, UserProxyAgent
from autogen_agentchat.conditions import MaxMessageTermination
from autogen_agentchat.teams import RoundRobinGroupChat
from autogen_ext.models.openai import OpenAIChatCompletionClient
import os
os.environ["OPENAI_API_KEY"] = "你的OpenAI API Key"


#------------------------------------------------------#
# 将 [Serializing Components] 的保存与加载代码粘贴到此处
#------------------------------------------------------#

model_client = OpenAIChatCompletionClient(
    model="gpt-4o",
    # api_key="YOUR_API_KEY",
)
agent = AssistantAgent(
    name="assistant",
    model_client=model_client,
    handoffs=["flights_refunder", "user"],
    # tools=[], # serializing tools is not yet supported
    system_message="Use tools to solve tasks.",
)

team = RoundRobinGroupChat(participants=[agent], termination_condition=MaxMessageTermination(2))

# 保存配置
team_config = team.dump_component()  
save_json(team_config, "./team.json")

# 加载配置
team_config = load_json("./team.json")
team.load_component(team_config)

Take a breath

恭喜你,完成了AutoGen的另一个阶段学习,相比较于入门的Tutorial部分而言Advanced部分虽然存在一些难度,但并没有很离谱,如果你在这两个阶段都亲自实践了的话一定收获很多。

接下来我将继续开一个篇章,对官网文档中的 More 小节 Examples 中的例子进行讲解,这部分内容实际难度会低于 Advanced 部分,你可以当做一次放松。

紧随其后我就要对 GitHub 仓库中的 samples 内容进行新开,这部分内容代码长度与难度均会高出不少,但仍然希望你能坚持下来。

  • Examples链接:https://microsoft.github.io/autogen/stable/user-guide/agentchat-user-guide/examples/index.html ;
  • GitHub仓库:https://github.com/microsoft/autogen/tree/main/python/samples;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值