R 计算平均值标准误差

平均值的标准误差用于衡量数据的分散程度,本文介绍两种方法计算平均值的标准误差。

平均值标准误差定义

平均值标准误差 = s / √n

  • s: 样本标准差
  • n: 样本数量

std.error()

plotrix 包提供了该方法,使用之前需要按照加载包:

library(plotrix)

# 示例数据集
data <- c(3, 4, 4, 5, 7, 8, 12, 14, 14, 15, 17, 19, 22, 24, 24, 24, 25, 28, 28, 29)

# 计算平均值的标准误差
std.error(data)
# 2.001447

计算结果为:2.001447

自定义函数实现

我们定义函数实现同样功能。

std_error <- function(x) sd(x) / sqrt(length(x))

# 示例数据集
data <- c(3, 4, 4, 5, 7, 8, 12, 14, 14, 15, 17, 19, 22, 24, 24, 24, 25, 28, 28, 29)

# 计算平均值的标准误差
std_error(data)

# 2.001447

两种方法的计算结果一致。

平均值的标准误差说明

平均值的标准误差用于衡量数据值偏离算术平均值的程度。下面两种情况值得注意:

  1. 平均值的标准误差越大,则数据偏离平均值越大。

为了好理解,我们修改上面的数据集,增加一个较大的数值。

#define dataset
data <- c(3, 4, 4, 5, 7, 8, 12, 14, 14, 15, 17, 19, 22, 24, 24, 24, 25, 28, 28, 150)
mean(data)
# 16.3

#calculate standard error of the mean 
std.error(data)

6.978265

我们注意到 平均值的标准误差从2.001447 增加到 6.978265。这表示当前数据值相较之前更偏离平均值。

  1. 当样本数量增加时,平均值的标准误差会减小

下面通过示例进行说明:

#define first dataset and find SEM
data1 <- c(1, 2, 3, 4, 5)
std.error(data1)

0.7071068

#define second dataset and find SEM
data2 <- c(1, 2, 3, 4, 5, 1, 2, 3, 4, 5)
std.error(data2)

0.4714045

第二个数据集简单重复第一个数据集两次。这样均值不变,但数据集长度增大一倍,我们看到标准误差也随之减小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值