DBT-core是一个命令行工具,它使数据分析师和工程师能够更有效地转换仓库中的数据。dbt的一个强大特性是seed命令,它可以将CSV文件(称为“seed”)加载到数据仓库中。本教程将带你完成使用dbt seed命令的过程。
在dbt中,seed是可以加载到数据仓库中的CSV文件。它们对于处理不经常更改的静态数据特别有用。例如,您可能有一个CSV文件,其中包含国家代码列表及其对应的国家名称。这些数据可以作为seed加载到仓库中,并在dbt模型中引用。
dbt seed 应用场景
代码映射
正如我们在前节描述的,我们可以使用seed将产品代码映射到产品名称。这可以扩展到任何需要将代码映射到更具描述性名称的场景。例如,你可以利用seed将错误代码映射到错误描述,或将缩写映射到它们的完整形式。
排除部分分析数据
假设有一些测试电子邮件地址或用户id列表,您希望将其从分析中排除。首先提供这些电子邮件地址或用户id创建一个seed,然后使用dbt seed命令将此数据加载到仓库中。在dbt模型中,您可以从分析中排除这些测试电子邮件地址或用户id。
载入少量数据集
如果您有不经常更改的小型参考数据集,那么通过seed加载到仓库中,可能比source表方式加载更有效。举例,你可能要在dbt模型中使用的关于汇率小数据集,直接保存在CSV文件中,利用seed命令加载效率更高。
数据验证
您可以使用seed来验证仓库中的数据。例如,您可能有seed数据,其中包含某个计算的预期结果。然后,您可以创建一个dbt测试,将仓库中的实际结果与种子中的预期结果进行比较。
机器学习模型测试
如果你是数据科学家或机器学习工程师,可以使用seed将测试数据加载到仓库中。然后,您可以使用这些测试数据来评估机器学习模型的性能。
dbt seed 示例实战
让我们创建一个用作种子的CSV文件。在本教程中,我们将使用一个简单的CSV文件,其中包含产品代码及其对应的产品名称。将以下数据保存在名为“product_codes.csv”的文件中:
product_code,product_name
PRD01,Apple iPhone 13
PRD02,Sams