DuckDB: 强大的动态列选择能力

DuckDB 1.1版本有几个特性使动态列选择变得更好。如果你duckdb版本较低,可以从官网地址下载最新版本进行学习,本文将深入探讨这些特性。包括动态选择列、排除列、基于动态列过滤数据等。
在这里插入图片描述

数据准备

为了演示动态列选择,我们需要有很多列的数据集,最好是包含很多数值的数据集。Kaggle提供了FIFA 22 complete player 数据集。我下载了一些CSV文件,并在DuckDB命令行中创建名为players的表:

create table players AS
select *
FROM read_csv('players_*.csv', ignore_errors=true);

验证结果:

D create table players AS select * FROM read_csv('players_*.csv', ignore_errors=true);
100% ▕████████████████████████████████████████████████████████████▏
D select count(*) from main.players;
┌──────────────┐
│ count_star() │
│    int64     │
├──────────────┤
│       142079 │
└──────────────┘

让我们通过查询DESCRIBE播放器的输出来快速了解一下我们将使用哪些列,这本身就是一个非常酷的DuckDB特性。

.mode jsonlines
FROM (DESCRIBE players)
SELECT
  MAP {column_name: column_type}
    .array_agg() AS col_info;

输出结果:

D .mode jsonlines
D from (desc players) select map{column_name: column_type}.array_agg() as col_info;
{"col_info":"[{sofifa_id=BIGINT}, {player_url=VARCHAR}, {short_name=VARCHAR}, {long_name=VARCHAR}, {player_positions=VARCHAR}, {overall=BIGINT}, {potential=BIGINT}, {value_eur=DOUBLE}, {wage_eur=DOUBLE}, {age=BIGINT}, {dob=DATE}, {height_cm=BIGINT}, {weight_kg=BIGINT}, {club_team_id=DOUBLE}, {club_name=VARCHAR}, {league_name=VARCHAR}, {league_level=BIGINT}, {club_position=VARCHAR}, {club_jersey_number=BIGINT}, {club_loaned_from=VARCHAR}, {club_joined=DATE}, {club_contract_valid_until=BIGINT}, {nationality_id=BIGINT}, {nationality_name=VARCHAR}, {nation_team_id=DOUBLE}, {nation_position=VARCHAR}, {nation_jersey_number=BIGINT}, {preferred_foot=VARCHAR}, {weak_foot=BIGINT}, {skill_moves=BIGINT}, {international_reputation=BIGINT}, {work_rate=VARCHAR}, {body_type=VARCHAR}, {real_face=VARCHAR}, {release_clause_eur=VARCHAR}, {player_tags=VARCHAR}, {player_traits=VARCHAR}, {pace=BIGINT}, {shooting=BIGINT}, {passing=BIGINT}, {dribbling=BIGINT}, {defending=BIGINT}, {physic=BIGINT}, {attacking_crossing=BIGINT}, {attacking_finishing=BIGINT}, {attacking_heading_accuracy=BIGINT}, {attacking_short_passing=BIGINT}, {attacking_volleys=BIGINT}, {skill_dribbling=BIGINT}, {skill_curve=BIGINT}, {skill_fk_accuracy=BIGINT}, {skill_long_passing=BIGINT}, {skill_ball_control=BIGINT}, {movement_acceleration=BIGINT}, {movement_sprint_speed=BIGINT}, {movement_agility=BIGINT}, {movement_reactions=BIGINT}, {movement_balance=BIGINT}, {power_shot_power=BIGINT}, {power_jumping=BIGINT}, {power_stamina=BIGINT}, {power_strength=BIGINT}, {power_long_shots=BIGINT}, {mentality_aggression=BIGINT}, {mentality_interceptions=BIGINT}, {mentality_positioning=BIGINT}, {mentality_vision=BIGINT}, {mentality_penalties=BIGINT}, {mentality_composure=VARCHAR}, {defending_marking_awareness=BIGINT}, {defending_standing_tackle=BIGINT}, {defending_sliding_tackle=BIGINT}, {goalkeeping_diving=BIGINT}, {goalkeeping_handling=BIGINT}, {goalkeeping_kicking=BIGINT}, {goalkeeping_positioning=BIGINT}, {goalkeeping_reflexes=BIGINT}, {goalkeeping_speed=BIGINT}, {ls=VARCHAR}, {st=VARCHAR}, {rs=VARCHAR}, {lw=VARCHAR}, {lf=VARCHAR}, {cf=VARCHAR}, {rf=VARCHAR}, {rw=VARCHAR}, {lam=VARCHAR}, {cam=VARCHAR}, {ram=VARCHAR}, {lm=VARCHAR}, {lcm=VARCHAR}, {cm=VARCHAR}, {rcm=VARCHAR}, {rm=VARCHAR}, {lwb=VARCHAR}, {ldm=VARCHAR}, {cdm=VARCHAR}, {rdm=VARCHAR}, {rwb=VARCHAR}, {lb=VARCHAR}, {lcb=VARCHAR}, {cb=VARCHAR}, {rcb=VARCHAR}, {rb=VARCHAR}, {gk=VARCHAR}, {player_face_url=VARCHAR}, {club_logo_url=VARCHAR}, {club_flag_url=VARCHAR}, {nation_logo_url=VARCHAR}, {nation_flag_url=VARCHAR}]"}

使用columns()选择列

是时候做一些查询了。我们将从使用COLUMNS()开始,它返回表中的所有列,与下面的方法相同:

select COLUMNS(*) FROM players LIMIT 1;

直接用 * 星号 结果一样:

D select * from players limit 1;
{
  "sofifa_id":158023,"player_url":"https://sofifa.com/player/158023/lionel-messi/150002","short_name":"L. Messi","long_name":"Lionel Andr茅s Messi Cuccittini","player_positions":"CF","overall":93,"potential":95,"value_eur":100500000.0,"wage_eur":550000.0,"age":27,"dob":"1987-06-24","height_cm":169,"weight_kg":67,"club_team_id":241.0,"club_name":"FC Barcelona","league_name":"Spain Primera Division","league_level":1,"club_position":"CF","club_jersey_number":10,"club_loaned_from":null,"club_joined":"2004-07-01","club_contract_valid_until":2018,"nationality_id":52,"nationality_name":"Argentina","nation_team_id":1369.0,"nation_position":"CF","nation_jersey_number":10,"preferred_foot":"Left","weak_foot":3,"skill
<think>好的,我现在需要解决用户关于如何结合AgGrid和DuckDB来实现高性能大数据展示的问题。首先,我得理解用户的具体需求。用户提到处理百万级数据时浏览器不能卡顿,并且打开多个表格时内存不溢出,这说明他们对性能和资源管理有较高要求。AgGrid本身已经是一个高性能的表格库,但结合DuckDB这样的OLAP引擎可以进一步提升数据处理能力。 首先,我应该回顾一下AgGrid和DuckDB各自的优势。AgGrid在客户端处理数据方面表现不错,支持虚拟滚动和分页,但面对超大数据集时,全部加载到前端仍然会有压力。而DuckDB是嵌入式的分析型数据库,擅长高效查询和处理大数据,适合在浏览器中使用WebAssembly运行,这样可以在客户端进行数据计算,减少服务端压力。 接下来,我需要考虑如何将两者结合起来。可能的步骤包括数据分块加载、使用DuckDB进行预处理和聚合、利用虚拟滚动减少渲染压力,以及优化查询性能。同时,要注意内存管理,避免浏览器内存溢出。 然后,我需要确保建议的步骤具体可行,并且有代码示例。例如,使用DuckDB的流式加载,每次只加载一部分数据,结合AgGrid的无限行模型。另外,DuckDB的SQL能力可以在本地执行聚合和过滤,减少传输数据量。 可能遇到的问题包括如何配置DuckDB与Vue.js项目的集成,如何处理数据更新的高亮显示(参考引用[2]),以及如何优化查询性能。需要确保在回答中提到这些关键点,并引用相关的资料,比如站内引用提到的内存管理和高亮显示的问题。 最后,生成的相关问题需要覆盖用户可能进一步询问的方向,比如性能优化、内存管理、动态数据更新和与其他技术栈的集成。这些问题应该帮助用户深入理解整个实现过程,并解决实际开发中的挑战。</think>### AgGrid 结合 DuckDB 实现高性能大数据展示的最佳实践 #### 1. **核心架构设计** - **本地化计算优先**:利用 DuckDB 的 WebAssembly 版本在浏览器中直接执行 SQL 查询,实现数据过滤、聚合和分页计算[^3]。例如: ```sql SELECT * FROM '1GB_dataset.parquet' WHERE price > 100 LIMIT 1000 ``` - **流式数据加载**:通过 DuckDB 的 `fetch_chunk` 方法实现分块加载,避免单次加载百万级数据导致内存溢出[^3]。 - **列式存储优化**:将原始数据转换为 Parquet 格式,利用 DuckDB 的列式存储特性加速查询。 #### 2. **关键技术实现** **步骤 1:集成 DuckDB-WASM** ```javascript import * as duckdb from '@duckdb/libertytracker'; const db = new duckdb.Database(); const conn = db.connect(); ``` **步骤 2:动态数据管道搭建** ```javascript // 分页查询示例 async function loadPage(offset, limit) { const query = `SELECT * FROM dataset ORDER BY id LIMIT ${limit} OFFSET ${offset}`; const result = await conn.send(query); gridOptions.api.setRowData(result); } ``` **步骤 3:虚拟滚动配置** ```javascript // AgGrid 配置 gridOptions = { rowModelType: 'infinite', cacheBlockSize: 1000, // 每块数据量 maxBlocksInCache: 5 // 内存中保留的块数 } ``` #### 3. **性能优化技巧** - **查询预热**:对常用过滤条件建立内存索引: ```sql CREATE INDEX price_idx ON dataset USING arrow(price); ``` - **批量更新策略**:通过 `transactionManager` 控制渲染频次: ```javascript gridOptions.api.applyTransactionAsync({ update: batchData }); ``` - **Web Worker 隔离**:将 DuckDB 查询进程放入独立线程,防止界面冻结。 #### 4. **内存管理方案** - **数据生命周期控制**: ```javascript // 释放不再使用的数据块 gridOptions.api.purgeInfiniteCache(); ``` - **WASM 内存限制**: ```javascript const db = new duckdb.Database({ maximumMemory: 1024 * 1024 * 512 // 限制512MB内存使用 }); ``` #### 5. **可视化增强** 参考高亮显示方案[^2],结合 DuckDB 的变更检测: ```javascript // 监听数据变化 conn.registerTable('current_data', updatedData); const changes = await conn.send(` SELECT * FROM current_data EXCEPT SELECT * FROM previous_data `); gridOptions.api.flashCells({ rowNodes: changedRows }); ``` ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值