DuckDB: 向量索引(vss)的一些注意事项

DuckDB最近添加了向量索引,这对于刚刚进入人工智能领域的人来说非常棒,但他们仍然喜欢成熟SQL(以及嵌入式/无服务器数据库)的温暖舒适。

VSS索引旨在加快搜索速度——DuckDB已经提供了相似性/距离函数和向量/数组数据类型,所以严格来说,它是一个有就好而不是必须的特性,特别是当您有几个(1000个而不是数百万个)文档时,并且可以在不减慢速度的情况下执行强行全表扫描。
在这里插入图片描述

查询计划

一旦添加了向量索引,就有必要检查DB是否确实使用了索引,特别是对于您想要加速的查询,以及它们是否确实运行得更快。

这篇文章介绍了一些向量搜索SQL查询和它们相关的查询计划。对于那些不习惯阅读查询计划的人,这里有一个快速且非常简单的入门:

  • 每个“框”或节点是数据库在处理查询时执行的一个步骤或操作。操作可以类似于Order By(需要根据某些标准对行进行排序)或Projection(需要选择部分或全部列并忽略其余列)。

  • 通常查询计划是树状或dag状的但我们今天要讲的所有查询计划都是线性的(即一步接着下一步等等)

  • 在OLAP数据库(如DuckDB)中,索引并不是那么重要,因为大多数查询都将扫描整个表(而不是选择一两行来执行事务)。但是,对于某些特殊情况,如全文搜索或向量相似性搜索,索引在OLAP数据库中仍然非常重要。

  • 在我们的示例中,一旦向量索引就绪,我们需要在查询计划中查找节点,其中DB正在执行索引扫描(HNSW_INDEX_SCAN),表明它没有通过顺序扫描(SEQ_SCAN)强行执行。

VSS索引示例

让我们从一些测试数据开始,然后创建索引。在DuckDB中使用矢量索引要记住的第一件事是在运行查询之前总是加载扩展-如果你不这样做,DuckDB不会警告你,它会简单地选择顺序扫描:

install vss;
load vss;
# D set hnsw_enable_experimental_persistence=true;  如果不是内存模式,需要增加该设置项
create table tbl (id integer primary key, vec float[3]);

insert into tbl
select a, array_value(a, a+1,a+2)
from range(1, 1000) ra(a);

create index idx on tbl using hnsw (vec);

limit子句非常有必要

如果没有limit子句,DuckDB会选择顺序扫描——这是正确的操作。这应该不用说了(特别是对于top-K查询),但仍然值得一提:

让我们做一个解释来获取查询计划。

当省略限制子句时:

explain
select * from tbl
order by array_distance(vec, [1, 2, 3]::float[3]) asc;

返回结果显示采用了顺序扫描(看最后部分):

┌─────────────────────────────┐
│┌───────────────────────────┐│
││       Physical Plan       ││
│└───────────────────────────┘│
└─────────────────────────────┘
┌───────────────────────────┐
│         PROJECTION        │
│    ────────────────────   │
│__internal_decompress_integ│
│     ral_integer(#0, 1)    │
│             #1            │
│                           │
│         ~999 Rows         │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│          ORDER_BY         │
│    ────────────────────   │
│           #2 ASC          │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│         PROJECTION        │
│    ────────────────────   │
│__internal_compress_integra│
│     l_usmallint(#0, 1)    │
│             #1            │
│             #2            │
│                           │
│         ~999 Rows         │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│         PROJECTION        │
│    ────────────────────   │
│             id            │
│            vec            │
│ array_distance(vec, [1.0, │
│         2.0, 3.0])        │
│                           │
│         ~999 Rows         │
└─────────────┬─────────────┘
┌─────────────┴─────────────┐
│         SEQ_SCAN          │
│    ────────────────────   │
│            tbl            │
│                           │
│        Projections:       │
│             id            │
│            vec            │
│                           │
│         ~999 Rows         │
└───────────────────────────┘

增加limit子句:

explain
select * from tbl
order 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值