LangChain 是一个开源框架,旨在简化使用大型语言模型(LLM)创建应用程序的过程。它为链提供了标准接口,与许多其他工具进行了集成,并为常见应用提供了端到端的链。
LangChain 让 AI 开发人员能够基于大型语言模型(如 GPT-4, DeepSeek)与外部计算和数据源相结合来开发应用程序。该框架提供了 Python 和 JavaScript 的包。
LangChain重要性
LangChain帮助管理复杂的工作流程,使llm更容易集成到各种应用程序中,如聊天机器人和文档分析。主要优势包括:
- 模块化工作流:简化了llm的链接,实现可重用和高效的工作流。
- 提示词管理:提供有效的提示词工程和内存记忆处理工具。
- 易于集成:简化了构建llm驱动应用程序的过程。
LangChain关键组件
1. Models(模型)
- 定义: Models 是 LangChain 的核心组件,负责处理自然语言任务。LangChain 支持多种类型的模型,包括大型语言模型(LLMs)、聊天模型(Chat Models)和嵌入模型(Embedding Models)。
- 类型:
- LLMs: 如 OpenAI 的 GPT 系列,用于生成文本。
- Chat Models: 如 OpenAI 的 ChatGPT,专为对话场景设计。
- Embedding Models: 如 OpenAI 的 text-embedding-ada-002,用于将文本转换为向量。
- 作用:
- 文本生成: 生成文章、代码、故事等。
- 问答系统: 回答用户问题,如客服机器人。
- 语义分析: 通过嵌入模型实现文本相似度计算,用于推荐系统或搜索。
2. Prompts(提示)
- 定义: Prompts 是用户输入或系统生成的文本,用于引导模型生成特定输出。LangChain 提供了多种提示模板和优化工具。
- 类型:
- 静态提示: 固定格式的提示,如“请总结以下文本”。
- 动态提示: 根据上下文生成的提示,如多轮对话中的问题。
- 作用:
- 控制输出: 通过设计提示,可以引导模型生成更符合需求的输出。
- 提高效率: 在客服场景中,使用标准化提示可以快速生成高质量回复。
- 多语言支持: 通过多语言提示,实现跨语言任务处理。
3. Chains(链)
- 定义: Chains 是将多个组件(如模型、提示、工具等)串联起来,形成一个完整的工作流程。
- 类型:
- 简单链: 单一任务链,如问答链。
- 复杂链: 多步骤任务链,如先检索信息再生成回答。
- 作用:
- 任务自动化: 在文档处理中,可以自动完成“加载文档→提取信息→生成报告”的流程。
- 多轮对话: 在聊天机器人中,通过链式结构实现上下文连贯的对话。
- 复杂推理: 在数据分析中,结合多个模型完成复杂推理任务。