POJ 2823 线段树 / 单调队列

题意

传送门 POJ 2823

题解
线段树

线段树维护区间的最大值与最小值,复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define inf 0x3f3f3f3f
#define maxn 1000005
#define st_size (1 << 21)
struct node
{
    int mx, mn;
    node() {}
    node(int mx, int mn) : mx(mx), mn(mn) {}
} st[st_size];
int n, k, arr[maxn], res[2][maxn];

void init(int k, int l, int r)
{
    if (r - l == 1)
    {
        st[k].mx = st[k].mn = arr[l];
    }
    else
    {
        int chl = (k << 1) + 1, chr = (k << 1) + 2, m = (l + r) >> 1;
        init(chl, l, m);
        init(chr, m, r);
        st[k].mx = max(st[chl].mx, st[chr].mx), st[k].mn = min(st[chl].mn, st[chr].mn);
    }
}

node query(int a, int b, int k, int l, int r)
{
    if (r <= a || b <= l)
    {
        return node(-inf, inf);
    }
    else if (a <= l && r <= b)
        return st[k];
    else
    {
        int chl = (k << 1) + 1, chr = (k << 1) + 2, m = (l + r) >> 1;
        node n1 = query(a, b, chl, l, m), n2 = query(a, b, chr, m, r);
        return node(max(n1.mx, n2.mx), min(n1.mn, n2.mn));
    }
}

int main()
{
    while (~scanf("%d%d", &n, &k))
    {
        for (int i = 0; i < n; i++)
        {
            scanf("%d", arr + i);
        }
        init(0, 0, n);
        int n2 = n - k + 1;
        for (int l = 0; l < n2; l++)
        {
            int r = l + k;
            node tmp = query(l, r, 0, 0, n);
            res[0][l] = tmp.mn, res[1][l] = tmp.mx;
        }
        for (int i = 0; i <= 1; i++)
        {
            for (int j = 0; j < n2; j++)
            {
                printf("%d%c", res[i][j], j + 1 == n2 ? '\n' : ' ');
            }
        }
    }
    return 0;
}
单调队列

单调递增队列维护区间最小值,单调递减队列维护区间最大值,复杂度 O ( n ) O(n) O(n)

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define inf 0x3f3f3f3f
#define maxn 1000005
int n, k, arr[maxn], q[maxn];

int main()
{
    while (~scanf("%d%d", &n, &k))
    {
        for (int i = 0; i < n; i++)
        {
            scanf("%d", arr + i);
        }
        int l = 0, r = -1;
        for (int i = 0; i < n; i++)
        {
            while (l <= r && q[l] <= i - k)
                ++l;
            while (l <= r && arr[i] < arr[q[r]])
                --r;
            q[++r] = i;
            if (i >= k - 1)
            {
                printf("%d ", arr[q[l]]);
            }
        }
        putchar('\n');
        l = 0, r = -1;
        for (int i = 0; i < n; i++)
        {
            while (l <= r && q[l] <= i - k)
                ++l;
            while (l <= r && arr[i] > arr[q[r]])
                --r;
            q[++r] = i;
            if (i >= k - 1)
            {
                printf("%d ", arr[q[l]]);
            }
        }
        putchar('\n');
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值