入选TPAMI2025!双通道卷积神经网络新突破!

2025深度学习发论文&模型涨点之——双通道卷积神经网络

双通道卷积神经网络通过两个独立的卷积层对输入数据进行处理,每个卷积层使用不同的卷积核提取特征,生成两个不同的特征图。这两个特征图可以单独进行后续的卷积和全连接操作,也可以通过某种方式(如求和、平均、权重叠加等)融合在一起,共同参与网络的决策过程。

  • 提高特征表示能力:两个通道从不同角度学习输入数据的特征,能够捕获更丰富的信息。

  • 增加网络深度和宽度:在保持计算复杂度基本不变的前提下,增加了网络的深度和宽度,有利于提高模型的泛化能力。

  • 降低过拟合风险:双通道结构可以看作一种正则化策略,通过增加网络结构的复杂度来减少过拟合的风险。

小编整理了一些双通道卷积神经网络论文】合集,以下放出部分,全部论文PDF版皆可领取。

需要的同学

回复“111”即可全部领取

论文精选

论文1:

Adaptive Split-Fusion Transformer

自适应分裂-融合变换器

方法

    • 分裂并行结构:将特征通道平均分配给两个并行路径(卷积路径和注意力路径),以分别提取局部和全局特征。

    • 高效卷积路径(HMCB):设计了一种高效的卷积分支,通过深度可分离卷积和残差连接,提高局部特征提取的效率。

    • 自适应融合模块:根据视觉内容动态调整卷积和注意力路径的权重,实现特征融合。

      图片

    创新点

        • 自适应融合:通过视觉内容动态调整卷积和注意力路径的权重,使模型能够根据图像内容动态选择局部或全局特征的重要性。这一机制在ImageNet-1K验证集上将Top-1准确率提升至83.9%,相比简单融合方法提升了0.2%。

        • 高效卷积分支(HMCB):相较于其他卷积分支设计,HMCB在保持低计算复杂度的同时,显著提升了模型性能。在ImageNet-1K验证集上,HMCB分支的使用使Top-1准确率从82.5%提升至82.7%。

        • 分裂并行结构:通过将特征通道分配给两个并行路径,充分利用了卷积和注意力的互补性,同时保持了与单路径模型相似的计算复杂度。这一结构在ImageNet-1K验证集上将Top-1准确率提升至82.7%,相比单路径模型(如纯注意力或纯卷积)分别提升了1.0%和10.3%。

          图片

        论文2:

        FusionMamba: Efficient Remote Sensing Image Fusion with State Space Model

        FusionMamba:基于状态空间模型的高效遥感图像融合

        方法

            • FusionMamba块:将单输入的Mamba块扩展为双输入,以有效融合空间和光谱特征。

            • 双U形网络结构:设计了两个U形网络分支,分别用于提取空间和光谱特征,并通过FusionMamba块进行特征融合。

            • 增强通道注意力模块(MCA):通过Mamba驱动的通道注意力模块,改善光谱信息的表示。

              图片

            创新点

                  • FusionMamba块:通过双输入设计,有效融合空间和光谱特征,性能显著优于传统的连接(Concat)和交叉注意力(CA)方法。在WorldView-3数据集上,FusionMamba块将PSNR提升至39.374,相比连接方法提升了0.35 dB。

                  • 双U形网络结构:通过分别提取空间和光谱特征,再进行层次化融合,显著提升了融合效果。在WorldView-3数据集上,该结构将PSNR提升至39.374,相比单路径方法提升了0.5 dB以上。

                  • 增强通道注意力模块(MCA):通过Mamba驱动的通道注意力模块,改善光谱信息的表示,进一步提升了融合性能。在WorldView-3数据集上,MCA模块的使用将PSNR提升至39.374,相比不使用MCA模块提升了0.05 dB。

                    图片


                  论文3:

                  Pyramid Attention Network for Medical Image Registration

                  用于医学图像配准的金字塔注意力网络

                  方法

                  • 双流金字塔编码器:利用通道注意力机制增强特征表示,通过金字塔结构提取多尺度特征。

                  • 局部注意力Transformer(LAT):作为解码器,分析运动模式并生成变形场。

                  • 正交正则化:通过正交损失函数减少特征冗余,增强不同运动模式的学习。

                    图片

                  创新点

                        • 双流金字塔编码器:通过通道注意力机制增强特征表示,显著提升了配准精度。在IXI数据集上,Dice相似系数(DSC)提升至65.1%,相比不使用通道注意力的模型提升了1.2%。

                        • 局部注意力Transformer(LAT):通过局部注意力机制处理体积数据,有效缓解了全局自注意力带来的内存问题。在LPBA40数据集上,LAT模块将DSC提升至71.1%,相比传统Transformer提升了0.5%。

                        • 正交正则化:通过正交损失函数减少特征冗余,使不同注意力头学习到更多样的运动模式。在AbdomenMR数据集上,正交正则化的使用将DSC提升至73.1%,相比不使用正则化的模型提升了3.0%。

                          图片


                        论文4:

                        Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation

                        用于会话式推荐的自监督超图卷积网络

                        方法

                          • 超图构建:将每个会话建模为超图中的一个超边,以捕捉项目间的高阶关系。

                          • 超图卷积网络:通过超图卷积操作,传播项目嵌入并生成高质量的推荐结果。

                          • 线图通道:基于超图的线图构建另一个图卷积网络,以捕捉会话间的连接性。

                            图片

                          创新点

                              • 超图建模:通过超图捕捉项目间的高阶关系,显著提升了推荐性能。在Tmall数据集上,DHCN模型的P@10和M@10指标分别提升了10.71%和7.87%,相比传统图神经网络(如SR-GNN)。

                              • 线图通道:引入线图通道以捕捉会话间的连接性,进一步提升了模型性能。在Nowplaying数据集上,线图通道的使用使P@10和M@10指标分别提升了12.25%和8.84%。

                              • 自监督学习:通过自监督学习增强超图建模,进一步提升了推荐性能。在Diginetica数据集上,自监督学习使P@10和M@10指标分别提升了6.19%和9.32%。

                                图片

                              小编整理了双通道卷积神经网络文代码合集

                              需要的同学

                              回复“111”即可全部领取

                              Vivado2023是一款集成开发环境软件,用于设计和验证FPGA(现场可编程门阵列)和可编程逻辑器件。对于使用Vivado2023的用户来说,license是必不可少的。 Vivado2023的license是一种许可证,用于授权用户合法使用该软件。许可证分为多种类型,包括评估许可证、开发许可证和节点许可证等。每种许可证都有不同的使用条件和功能。 评估许可证是免费提供的,让用户可以在一段时间内试用Vivado2023的全部功能。用户可以使用这个许可证来了解软件的性能和特点,对于初学者和小规模项目来说是一个很好的选择。但是,使用评估许可证的用户在使用期限过后需要购买正式的许可证才能继续使用软件。 开发许可证是付费的,可以永久使用Vivado2023的全部功能。这种许可证适用于需要长期使用Vivado2023进行开发的用户,通常是专业的FPGA设计师或工程师。购买开发许可证可以享受Vivado2023的技术支持和更服务,确保软件始终保持最的版本和功能。 节点许可证是用于多设备或分布式设计的许可证,可以在多个计算机上安装Vivado2023,并共享使用。节点许可证适用于大规模项目或需要多个处理节点进行设计的用户,可以提高工作效率和资源利用率。 总之,Vivado2023 license是用户在使用Vivado2023时必须考虑的问题。用户可以根据自己的需求选择合适的许可证类型,以便获取最佳的软件使用体验。
                              评论 4
                              添加红包

                              请填写红包祝福语或标题

                              红包个数最小为10个

                              红包金额最低5元

                              当前余额3.43前往充值 >
                              需支付:10.00
                              成就一亿技术人!
                              领取后你会自动成为博主和红包主的粉丝 规则
                              hope_wisdom
                              发出的红包
                              实付
                              使用余额支付
                              点击重新获取
                              扫码支付
                              钱包余额 0

                              抵扣说明:

                              1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
                              2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

                              余额充值