论文(设计)题目 基于LSTM的股票价格预测系统的设计与实现
与本课题有关的国内外研究情况:
随着大数据时代的到来,金融市场的数据量呈现出爆炸性增长。股票价格预测作为金融领域的重要研究方向,对于投资者而言具有重要的指导意义。传统的股票价格预测方法往往基于统计模型或简单的机器学习算法,难以捕捉股票价格的非线性特征和时序依赖性。因此,本研究旨在利用深度学习技术,特别是长短时记忆网络(LSTM),对股票价格的涨跌幅度进行预测,以提高预测精度和稳定性。
PyTorch作为一个基于Torch的Python开源机器学习库,为深度学习模型的搭建和训练提供了强大的支持。本研究将利用PyTorch搭建LSTM预测模型,通过对股票信息作多值量化分类,将股票预测转化成一个多维函数拟合问题。这不仅可以推动金融时间序列预测技术的发展,还可以为投资者提供更加准确、可靠的预测结果,有助于降低投资风险,提高投资效益。
近年来,随着深度学习技术的快速发展,长短时记忆网络(LSTM)在股票价格预测领域的应用引起了广泛关注。在国内外,许多学者针对这一问题开展了深入研究,取得了一系列的研究成果。
在国内方面,李新尧在2023年《基于SSA-LSTM神经网络的股票价格预测研究》中提出了基于LSTM的股票价格预测模型,通过对历史股价数据进行训练,成功捕捉了股票价格的时间序列特性。该研究认为,LSTM能够有效处理时间序列数据中的长期依赖问题,从而提高预测精度。张怡在2023年《基于ARIMA和AT-LSTM组合模型的股票价格预测》中则进一步研究了LSTM模型在股票价格预测中的优化策略,通过改进模型结构和参数设置,提高了预测的稳定性和准确性。
在国际上,Hong S 在《A study on