测试冰淇淋模型

测试领域的冰淇淋模型(Ice Cream Cone Model)是一个相对于传统的测试金字塔模型的反转,是一种与经典金字塔模型相对的测试策略。在这种模型中,测试的分布和重点与传统金字塔模型相反。以下是冰淇淋模型的主要特点和原因:

特点

1. 大量的端到端测试:

- 冰淇淋模型的顶部是大量的端到端测试,这些测试模拟用户行为,覆盖整个应用的流程。

2. 较少的集成测试:

- 相对于端到端测试,集成测试的数量较少。这可能是因为在某些项目中,集成测试的难度较高,或者由于技术限制难以实现。

3. 极少或没有单元测试:

- 在冰淇淋模型的顶部,单元测试的数量极少,甚至可能完全没有。这可能是因为开发团队没有意识到单元测试的重要性,或者由于技术栈的限制。

原因

1. 技术限制:

- 某些技术栈或项目架构可能使得编写单元测试变得困难或不切实际。

2. 团队文化:

- 如果开发团队没有形成编写单元测试的习惯,或者对单元测试的价值认识不足,可能会导致单元测试的缺失。

3. 项目阶段:

- 在项目的后期阶段,可能由于时间压力,团队会更倾向于编写端到端测试来快速验证功能。

4. 外部依赖:

- 如果应用严重依赖外部系统或服务,编写单元测试可能需要大量的模拟和桩(stub),这会增加测试的复杂性。

问题

1. 维护成本高:

- 端到端测试通常更复杂,更难以维护,且更容易受到外部变化的影响。

2. 测试速度慢:

- 端到端测试的执行时间通常较长,这会影响持续集成的效率。

3. 反馈周期长:

- 由于测试执行慢,开发人员可能需要等待较长时间才能获得反馈,这会降低开发效率。

4. 风险增加:

- 缺乏单元测试可能导致在代码库的早期阶段就引入缺陷,而这些缺陷可能在后期才被发现,增加了修复成本。

解决方案

- 提高单元测试的覆盖率:即使在技术限制的情况下,也应该尽可能地编写单元测试。

- 优化集成测试:通过使用模拟对象和依赖注入等技术,减少集成测试的复杂性。

- 合理分配测试类型:根据项目的实际需求和资源情况,合理分配不同类型的测试,避免过度依赖端到端测试。

- 教育和文化:培养团队对测试重要性的认识,特别是单元测试的价值。

冰淇淋模型并不是一个理想的测试策略,它反映了测试实践的不平衡。理想情况下,团队应该努力实现一个更加平衡的测试策略,如传统的金字塔模型或冠军杯模型,以确保软件质量和开发效率。

最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:【文末自行领取】

这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!

好的,我可以为你写一个完整的Python代码的完型填空的NLP(自然语言处理)语言模型,使用PyTorch和transformers库,预训练模型使用BERT。在这个代码中,我们将使用一个小型的中文完型填空数据集进行训练,包含100个样本。下面是代码实现: ```python import torch from transformers import AutoTokenizer, AutoModelForMaskedLM, AdamW from torch.utils.data import Dataset, DataLoader # 定义数据集类 class ClozeDataset(Dataset): def __init__(self, texts, labels, tokenizer): self.texts = texts self.labels = labels self.tokenizer = tokenizer def __len__(self): return len(self.texts) def __getitem__(self, idx): text = self.texts[idx] label = self.labels[idx] inputs = self.tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt', pad_to_max_length=True) inputs["labels"] = self.tokenizer.convert_tokens_to_ids(label) return inputs # 加载数据集 texts = ["今天是__,天气__,我和小明一起去__。我们先去了公园,看到了很多__在花丛中飞舞。然后,我们去了__店,点了一份__和一杯__,品尝着美食,享受着__的时光。"] * 100 labels = [["星期六", "晴朗", "游泳", "蝴蝶", "冰淇淋", "披萨", "可乐", "愉快"]] * 100 tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") dataset = ClozeDataset(texts, labels, tokenizer) # 定义模型和优化器 model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese") optimizer = AdamW(model.parameters(), lr=5e-5) # 定义损失函数和评价指标 loss_fn = torch.nn.CrossEntropyLoss() metric_fn = torch.nn.CrossEntropyLoss() # 训练模型 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model.to(device) model.train() train_loader = DataLoader(dataset, batch_size=16, shuffle=True) for epoch in range(3): epoch_loss = 0.0 epoch_metric = 0.0 for batch in train_loader: batch = {k: v.to(device) for k, v in batch.items()} inputs = {k: v for k, v in batch.items() if k != "labels"} labels = batch["labels"] outputs = model(**inputs) logits = outputs.logits loss = loss_fn(logits.view(-1, tokenizer.vocab_size), labels.view(-1)) metric = metric_fn(torch.argmax(logits, dim=2), labels) optimizer.zero_grad() loss.backward() optimizer.step() epoch_loss += loss.item() epoch_metric += metric.item() print("Epoch {}, Loss: {}, Metric: {}".format(epoch+1, epoch_loss/len(train_loader), epoch_metric/len(train_loader))) # 测试模型 model.eval() text = "今天是__,天气__,我和小明一起去__。我们先去了公园,看到了很多__在花丛中飞舞。然后,我们去了__店,点了一份__和一杯__,品尝着美食,享受着__的时光。" inputs = tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt', pad_to_max_length=True) outputs = model(**inputs) predicted_labels = [] for pos in torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]: predicted_labels.append(tokenizer.convert_ids_to_tokens(torch.argmax(outputs.logits[0, pos]).item())) filled_text = text.replace(tokenizer.mask_token, predicted_labels[0]) print(filled_text) ``` 在这个代码中,我们首先定义了一个数据集类`ClozeDataset`,用于加载完型填空数据集并将其转换为模型输入格式。然后,我们加载了BERT模型和分词器,并定义了模型的优化器、损失函数和评价指标。接着,我们将模型转移到GPU上,并训练它。在每个epoch中,我们通过遍历数据集批次来训练模型,并计算损失和评价指标。最后,我们测试模型,预测输入文本中缺失的标签词,并输出填好空格后的完整文本。 你可以根据自己的需求修改或完善这个代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值