数学有关的知识点

版权声明:本文为博主原创文章,未经博主允许随便转载,请注明出处。 https://blog.csdn.net/nhl19961226/article/details/79958903

【球冠的面积】

链接:传送门
这里写图片描述
假定球冠最大开口部分圆的半径为 r ,对应球半径 R 有关系:r = Rc
osθ,则有球冠积分表达:
球冠面积微分元 dS = 2πr*Rdθ = 2πR^2*cosθ dθ
积分下限为θ,上限π/2
所以:S = 2πR*R(1 - sinθ)
其中:R(1 - sinθ)即为球冠的自身高度H
所以:S = 2πRH
S=∫dS =∫2πr*Rdθ=∫ (2πR)^2*cosθ dθ=(2πR)^2∫cosθ dθ= 2πR^2(1 - sinθ)
球缺的体积公式
若球半径是R,球缺的高是h,球缺的底面半径是r,体积是V,则
V=лh^2*(R-h/3)
V=лh*(r^2/2+h^2/6)

【已知弦长求弧长】

这里写图片描述
这里写图片描述

【通过经纬度求弦长】

题目链接:传送门
这里写图片描述
题目:给出地球上的两个点的经度和纬度,计算两点球面距离和两点的空间距离差。

分析:计算几何、大地坐标系。利用公式可直接解得两点的空间距离:

        d = r*sqrt(2-2*(cos(lat1)*cos(lat2)*cos(lon1-lon2)+sin(lat1)*sin(lat2)))

        推导过程如下:
        如图,C,D为已知两点则有如下推导:            

        AB = r*cos(lat1);DE = r*cos(lat2);BE = r*sin(lat1) + r*sin(lat2);

        AD*AD = BE*BE + (AB-DE)*(AB-DE) = 2*r*r - 2*r*r*sin(lat1)*sin(lat2) - 2*r*r*cos(lat1)*cos(lat2);

        AC*AC = 2*AB*AB - 2*AB*AB*cos(lon1-lon2) = 2*r*r*cos(lat1)*cos(lat1)*(1-cos(lon1-lon2));

        DF*DF = 2*DE*DE - 2*DE*DE*cos(lon1-lon2) = 2*r*r*cos(lat2)*cos(lat2)*(1-cos(lon1-lon2));

        AC*DF = 2*r*r*cos(lat1)*cos(lat2)*(1-cos(lon1-lon2));

        由托勒密定理有 AC*DF + AD*AD = CD*CD 整理有:

        CD = r*sqrt(2-2*(cos(lat1)*cos(lat2)*cos(lon1-lon2)+sin(lat1)*sin(lat2)));

代码:

#include <bits/stdc++.h>
using namespace std;

int main()
{
    int t;
    cin >> t;
    int r = 6371009;
    double PI = acos(-1);
    while(t--)
    {
        double lat1, lng1, lat2, lng2;
        cin >> lat1 >> lng1 >> lat2 >> lng2;
        lat1+= 180;
        lat2+=180;
        lat1 *= PI/180;
        lat2 *= PI/180;
        lng1 *= PI/180;
        lng2 *= PI/180;  
        double x1, x2, y1, y2, z1, z2;
        z1 = r * sin(lat1);
        y1 = r * cos(lat1) * sin(lng1);
        x1 = r * cos(lat1) * cos(lng1);
        z2 = r * sin(lat2);
        y2 = r * cos(lat2) * sin(lng2);
        x2 = r * cos(lat2) * cos(lng2);
        double len1 = sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)+(z1-z2)*(z1-z2));//距离
        double len2 = 2 * r * asin(len1 / (2 * r));//弧度

        printf("%lld\n",(long long)(len2 - len1 + 0.5));
    }
    return 0;
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页