曲面的面积微元
方程形式:以空间中曲面x+y+z=1为例,n=(1,1,1)
c
o
s
θ
=
a
b
=
d
c
=
1
(
d
=
(
0
,
0
,
z
)
的
长
度
)
3
(
(
x
,
y
,
z
)
=
(
1
,
1
,
1
)
的
长
度
)
cosθ=\frac{a}{b}=\frac{d}{c}=\frac{1(d=(0,0,z)的长度)}{\sqrt { 3 }((x,y,z)=(1,1,1)的长度) }
cosθ=ba=cd=3((x,y,z)=(1,1,1)的长度)1(d=(0,0,z)的长度)
上
半
球
x
2
+
y
2
+
z
2
−
a
2
=
0
的
表
面
积
:
{
2
x
,
2
y
,
2
z
}
上半球x^2+y^2+z^2-a^2=0的表面积:\{2x,2y,2z \}
上半球x2+y2+z2−a2=0的表面积:{2x,2y,2z}
c
o
s
θ
=
z
(
x
2
+
y
2
+
z
2
)
1
2
cosθ=\frac{z}{ (x^2+y^2+z^2)^{\frac{1}{2}}}
cosθ=(x2+y2+z2)21z
∫
∫
1
c
o
s
θ
d
x
d
y
=
2
π
a
2
\int\int\frac { 1 } { cosθ }dxdy= 2\pi a^2
∫∫cosθ1dxdy=2πa2
函数形式:
两类积分的联系: