曲面的面积微元

曲面的面积微元

方程形式:以空间中曲面x+y+z=1为例,n=(1,1,1)

在这里插入图片描述
c o s θ = a b = d c = 1 ( d = ( 0 , 0 , z ) 的 长 度 ) 3 ( ( x , y , z ) = ( 1 , 1 , 1 ) 的 长 度 ) cosθ=\frac{a}{b}=\frac{d}{c}=\frac{1(d=(0,0,z)的长度)}{\sqrt { 3 }((x,y,z)=(1,1,1)的长度) } cosθ=ba=cd=3 (x,y,z)=1111d=(0,0,z)

上 半 球 x 2 + y 2 + z 2 − a 2 = 0 的 表 面 积 : { 2 x , 2 y , 2 z } 上半球x^2+y^2+z^2-a^2=0的表面积:\{2x,2y,2z \} x2+y2+z2a2=0{2x2y2z}
c o s θ = z ( x 2 + y 2 + z 2 ) 1 2 cosθ=\frac{z}{ (x^2+y^2+z^2)^{\frac{1}{2}}} cosθ=(x2+y2+z2)21z
∫ ∫ 1 c o s θ d x d y = 2 π a 2 \int\int\frac { 1 } { cosθ }dxdy= 2\pi a^2 cosθ1dxdy=2πa2

函数形式:

在这里插入图片描述

两类积分的联系:
在这里插入图片描述

添加链接描述

©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页