状态方程-层裂相关

状态方程-层裂相关

体模量

U − u U-u Uu Hugoniot 线
U = a 0 + s u U=a_0+su U=a0+su
Euler形式的冲击突跃条件:
[ u ] = − ρ + U [ V ] [ p ] = ρ + U u − [u]=-\rho^+U[V]\\ [p]=\rho^+Uu^- [u]=ρ+U[V][p]=ρ+Uu
代入:
[ p ] = − ρ + 2 U 2 [ V ] [p]=-{\rho^+}^2U^2[V] [p]=ρ+2U2[V] [ p ] = − ρ + 2 ( a 0 + s u ) 2 [ V ] [p]=-{\rho^+}^2(a_0+su)^2[V] [p]=ρ+2(a0+su)2[V]

u , V u,V u,V 关系:
u = − ρ + ( a 0 + s u ) [ V ] u=-\rho^+(a_0+su)[V] u=ρ+(a0+su)[V] u a 0 + s u = − ρ + [ V ] \frac{u}{a_0+su}=-\rho^+[V] a0+suu=ρ+[V] 1 − a 0 a 0 + s u = − s ρ + [ V ] 1-\frac{a_0}{a_0+su}=-s\rho^+[V] 1a0+sua0=sρ+[V] 1 + s ρ + [ V ] = a 0 a 0 + s u 1+s\rho^+[V]=\frac{a_0}{a_0+su} 1+sρ+[V]=a0+sua0 1 1 + s ρ + [ V ] = 1 + s a 0 u \frac{1}{1+s\rho^+[V]}=1+\frac{s}{a_0}u 1+sρ+[V]1=1+a0su − a 0 ρ + [ V ] 1 + s ρ + [ V ] = u \frac{-a_0\rho^+[V]}{1+s\rho^+[V]}=u 1+sρ+[V]a0ρ+[V]=u
代入:
[ p ] = − ρ + 2 ( a 0 + s − a 0 ρ + [ V ] 1 + s ρ + [ V ] ) 2 [ V ] [p]=-{\rho^+}^2(a_0+s\frac{-a_0\rho^+[V]}{1+s\rho^+[V]})^2[V] [p]=ρ+2(a0+s1+sρ+[V]a0ρ+[V])2[V] [ p ] = − ρ + 2 a 0 2 ( 1 1 + s ρ + [ V ] ) 2 [ V ] [p]=-{\rho^+}^2{a_0}^2(\frac{1}{1+s\rho^+[V]})^2[V] [p]=ρ+2a02(1+sρ+[V]1)2[V] [ p ] = − ρ + 2 a 0 2 [ V ] 1 + 2 s ρ + [ V ] + ( s ρ + [ V ] ) 2 [p]=\frac{{-\rho^+}^2{a_0}^2[V]}{1+2s\rho^+[V]+(s\rho^+[V])^2} [p]=1+2sρ+[V]+(sρ+[V])2ρ+2a02[V]
求导:
d [ p ] d [ V ] = − ρ + 2 a 0 2 ( 1 − s ρ + [ V ] ) ( 1 + s ρ + [ V ] ) 3 \frac{d[p]}{d[V]}=\frac{-{\rho^+}^2a_0^2(1-s\rho^+[V])}{(1+s\rho^+[V])^3} d[V]d[p]=(1+sρ+[V])3ρ+2a02(1sρ+[V])
铜: a 0 = 3.94   k m ⋅ s − 1 ,   s = 1.489 ,   ρ 0 = 8.93 g ⋅ c m − 3 a_0=3.94\,km\cdot s^{-1},\,s=1.489,\,\rho_0=8.93g\cdot cm^{-3} a0=3.94kms1,s=1.489,ρ0=8.93gcm3
不锈钢: a 0 = 4.569   k m ⋅ s − 1 ,   s = 1.490 ,   ρ 0 = 7.896 g ⋅ c m − 3 a_0=4.569\,km\cdot s^{-1},\,s=1.490,\,\rho_0=7.896g\cdot cm^{-3} a0=4.569kms1,s=1.490,ρ0=7.896gcm3

import matplotlib.pyplot as plt
import numpy as np
# EOS
rho0=8.93
s=1.489
a0=3.94
V0=1/rho0
V = np.arange(0.85*V0, 1.1*V0, 0.001)
p=-((rho0*a0)**2)*(V-V0)/(1+s*rho0*(V-V0))**2
K=V*((rho0*a0)**2)*(1-s*rho0*(V-V0))/(1+s*rho0*(V-V0))**3
fig, ax1 = plt.subplots()
ax1.plot(p,V)
ax2 = ax1.twinx()
ax2.plot(p, K,"r")

比较:
在这里插入图片描述

冲击波温升

(摘取自《材料的动力学行为》MA Meyers》)
用Grüneisen状态方程和热力学关系计算出 T 1 T_1 T1 T 2 T_2 T2:

首先 0 → 1 0\to1 01,冲击加载:
热力学第一定律(内能=热能-外力功):
d E = d Q − d W dE=dQ-dW dE=dQdW d W = P d V   且   d Q T = d s dW=PdV\,且 \, \frac{dQ}{T}=ds dW=PdVTdQ=ds
热力学表达式:
S = f ( T , V ) S=f(T,V) S=f(T,V) d S = ( ∂ S ∂ T ) V d T + ( ∂ S ∂ V ) T d V dS=\left(\frac{\partial S}{\partial T} \right)_VdT+\left(\frac{\partial S}{\partial V} \right)_TdV dS=(TS)VdT+(VS)TdV T d S = T ( ∂ S ∂ T ) V d T + T ( ∂ S ∂ V ) T d V TdS=T\left(\frac{\partial S}{\partial T} \right)_VdT+T\left(\frac{\partial S}{\partial V} \right)_TdV TdS=T(TS)VdT+T(VS)TdV
其中:
C v = ( ∂ E ∂ T ) V = T ( ∂ S ∂ T ) V C_v=\left(\frac{\partial E}{\partial T} \right)_V=T\left(\frac{\partial S}{\partial T} \right)_V Cv=(TE)V=T(TS)V
麦克斯韦关系:
d A = − P d V − S d T dA=-PdV-SdT dA=PdVSdT
可导出: ( ∂ S ∂ V ) T = ( ∂ P ∂ T ) V = ( ∂ P ∂ E ) V ( ∂ E ∂ T ) V = γ V C v \left(\frac{\partial S}{\partial V} \right)_T=\left(\frac{\partial P}{\partial T} \right)_V=\left(\frac{\partial P}{\partial E} \right)_V\left(\frac{\partial E}{\partial T} \right)_V=\frac{\gamma}{V}C_v (VS)T=(TP)V=(EP)V(TE)V=VγCv
上面用到了Grüneisen方程: ( ∂ P ∂ E ) V = γ V \left(\frac{\partial P}{\partial E} \right)_V=\frac{\gamma}{V} (EP)V=Vγ
由上面推导可知: d E = C v d T + T γ V C v d V − P d V dE=C_vdT+T\frac{\gamma}{V}C_vdV-PdV dE=CvdT+TVγCvdVPdV
Hugoniot冲击线可知: Δ E = 1 2 ( P 1 + P 0 ) ( V 0 − V 1 ) \Delta E=\frac{1}{2}(P_1+P_0)(V_0-V_1) ΔE=21(P1+P0)(V0V1)
沿Hugoniot线计算内能随体积的变化:
( d E d V ) H = C v ( d T d V ) H + T γ V C v − P \left(\frac{dE}{dV}\right)_H=C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v-P (dVdE)H=Cv(dVdT)H+TVγCvP ( d E d V ) H = 1 2 ( d P d V ) H ( V 0 − V ) − P 2 \left(\frac{dE}{dV}\right)_H=\frac{1}{2}\left(\frac{dP}{dV}\right)_H\left(V_0-V\right)-\frac{P}{2} (dVdE)H=21(dVdP)H(V0V)2P
求解: C v ( d T d V ) H + T γ V C v = 1 2 ( d P d V ) H ( V 0 − V ) + P 2 C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v= \frac{1}{2}\left(\frac{dP}{dV}\right)_H\left(V_0-V\right)+\frac{P}{2} Cv(dVdT)H+TVγCv=21(dVdP)H(V0V)+2P C v ( d T d V ) H + T γ V C v = 1 2 ( ρ + 2 a 0 2 ( 1 − s ρ + [ V ] ) ( 1 + s ρ + [ V ] ) 3 ( V − V 0 ) − ρ + 2 a 0 2 [ V ] 1 + 2 s ρ + [ V ] + ( s ρ + [ V ] ) 2 ) C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v= \frac{1}{2}\left(\frac{{\rho^+}^2a_0^2(1-s\rho^+[V])}{(1+s\rho^+[V])^3} \left(V-V_0\right)-\frac{{\rho^+}^2{a_0}^2[V]}{1+2s\rho^+[V]+(s\rho^+[V])^2}\right) Cv(dVdT)H+TVγCv=21((1+sρ+[V])3ρ+2a02(1sρ+[V])(VV0)1+2sρ+[V]+(sρ+[V])2ρ+2a02[V]) C v ( d T d V ) H + T γ V C v = ρ + 2 a 0 2 2 ( 1 + s ρ + [ V ] ) 3 ( ( 1 − s ρ + [ V ] ) ( V − V 0 ) − ( 1 + s ρ + [ V ] ) ( V − V 0 ) ) C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v= \frac{{\rho^+}^2a_0^2}{2(1+s\rho^+[V])^3}\left({(1-s\rho^+[V])} \left(V-V_0\right)-{(1+s\rho^+[V])}\left(V-V_0\right)\right) Cv(dVdT)H+TVγCv=2(1+sρ+[V])3ρ+2a02((1sρ+[V])(VV0)(1+sρ+[V])(VV0)) C v ( d T d V ) H + T γ V C v = − s ρ + 3 a 0 2 ( V − V 0 ) 2 ( 1 + s ρ + ( V − V 0 ) ) 3 C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v= \frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{(1+s\rho^+(V-V_0))^3} Cv(dVdT)H+TVγCv=(1+sρ+(VV0))3sρ+3a02(VV0)2
T T T视为 y y y V V V视为 x x x,一阶微分方程: y ′ + γ 0 V 0 y = − s ρ + 3 a 0 2 ( V − V 0 ) 2 C v ( 1 + s ρ + ( V − V 0 ) ) 3 y'+\frac{\gamma_0}{V_0}y= \frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3} y+V0γ0y=Cv(1+sρ+(VV0))3sρ+3a02(VV0)2
先求通解: y ′ + γ 0 V 0 y = 0 y'+\frac{\gamma_0}{V_0}y=0 y+V0γ0y=0 y = A exp ⁡ ( − γ 0 V 0 x ) y=A\exp\left(- \frac{\gamma_0}{V_0}x\right) y=Aexp(V0γ0x)
变系数法求特解: y = A ( x ) exp ⁡ ( − γ 0 V 0 x ) y=A(x)\exp\left(- \frac{\gamma_0}{V_0}x\right) y=A(x)exp(V0γ0x) A ′ ( x ) exp ⁡ ( − γ 0 V 0 x ) = − s ρ + 3 a 0 2 ( V − V 0 ) 2 C v ( 1 + s ρ + ( V − V 0 ) ) 3 A'(x)\exp\left(- \frac{\gamma_0}{V_0}x\right)=\frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3} A(x)exp(V0γ0x)=Cv(1+sρ+(VV0))3sρ+3a02(VV0)2 A ( V ) = ∫ V 0 V − s ρ + 3 a 0 2 ( V − V 0 ) 2 C v ( 1 + s ρ + ( V − V 0 ) ) 3 exp ⁡ ( γ 0 V 0 V ) d V A(V)=\int_{V_0}^{V}{\frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3}\exp\left( \frac{\gamma_0}{V_0}V\right)dV} A(V)=V0VCv(1+sρ+(VV0))3sρ+3a02(VV0)2exp(V0γ0V)dV
由此可得:
T = A exp ⁡ ( − γ 0 V 0 V ) + ∫ V 0 V − s ρ + 3 a 0 2 ( V − V 0 ) 2 C v ( 1 + s ρ + ( V − V 0 ) ) 3 exp ⁡ ( γ 0 V 0 V ) d V T=A\exp\left(- \frac{\gamma_0}{V_0}V\right)+\int_{V_0}^{V}\frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3}\exp\left( \frac{\gamma_0}{V_0}V\right)dV T=Aexp(V0γ0V)+V0VCv(1+sρ+(VV0))3sρ+3a02(VV0)2exp(V0γ0V)dV
V = V 0 V=V_0 V=V0时, T = T 0 T=T_0 T=T0
T = T 0 exp ⁡ ( − γ 0 V 0 ( V − V 0 ) ) + ∫ V 0 V − s ρ + 3 a 0 2 ( V − V 0 ) 2 C v ( 1 + s ρ + ( V − V 0 ) ) 3 exp ⁡ ( γ 0 V 0 V ) d V T=T_0\exp\left(- \frac{\gamma_0}{V_0}(V-V_0)\right)+\int_{V_0}^{V}\frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3}\exp\left( \frac{\gamma_0}{V_0}V\right)dV T=T0exp(V0γ0(VV0))+V0VCv(1+sρ+(VV0))3sρ+3a02(VV0)2exp(V0γ0V)dV

1 → 2 1\to2 12,等熵卸载:
T d S = C v d T + T γ V C v d V = 0 TdS=C_vdT+T\frac{\gamma}{V}C_vdV=0 TdS=CvdT+TVγCvdV=0 d T T = − γ V d V \frac{dT}{T}=-\frac{\gamma}{V}dV TdT=VγdV T = A exp ⁡ ( − γ 0 V 0 V ) T=A\exp\left(-\frac{\gamma_0}{V_0}V \right) T=Aexp(V0γ0V) T = T 1 exp ⁡ ( − γ 0 V 0 ( V − V 1 ) ) T=T_1\exp\left(-\frac{\gamma_0}{V_0}(V-V_1) \right) T=T1exp(V0γ0(VV1))卸载的终点应为: P 2 = 0 P_2=0 P2=0,等熵过程:
d E = − P d V dE=-PdV dE=PdVGrüneisen本构:
d P = γ V d E = − γ V P d V dP=\frac{\gamma}{V}dE=-\frac{\gamma}{V}PdV dP=VγdE=VγPdV P = P 1 exp ⁡ ( − γ 0 V 0 ( V − V 1 ) ) P=P_1\exp\left(-\frac{\gamma_0}{V_0}(V-V_1) \right) P=P1exp(V0γ0(VV1))
求出:
P 1 P 2 = T 1 T 2 \frac{P_1}{P_2}=\frac{T_1}{T_2} P2P1=T2T1
P 2 P_2 P2 如果取标准大气压, T 2 T_2 T2 极小(约为0K)与实际相差较远。Meyers书上取 V 2 = V 0 V_2=V_0 V2=V0 计算的 T 2 T_2 T2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值