体模量
U
−
u
U-u
U−u Hugoniot 线
U
=
a
0
+
s
u
U=a_0+su
U=a0+su
Euler形式的冲击突跃条件:
[
u
]
=
−
ρ
+
U
[
V
]
[
p
]
=
ρ
+
U
u
−
[u]=-\rho^+U[V]\\ [p]=\rho^+Uu^-
[u]=−ρ+U[V][p]=ρ+Uu−
代入:
[
p
]
=
−
ρ
+
2
U
2
[
V
]
[p]=-{\rho^+}^2U^2[V]
[p]=−ρ+2U2[V]
[
p
]
=
−
ρ
+
2
(
a
0
+
s
u
)
2
[
V
]
[p]=-{\rho^+}^2(a_0+su)^2[V]
[p]=−ρ+2(a0+su)2[V]
u
,
V
u,V
u,V 关系:
u
=
−
ρ
+
(
a
0
+
s
u
)
[
V
]
u=-\rho^+(a_0+su)[V]
u=−ρ+(a0+su)[V]
u
a
0
+
s
u
=
−
ρ
+
[
V
]
\frac{u}{a_0+su}=-\rho^+[V]
a0+suu=−ρ+[V]
1
−
a
0
a
0
+
s
u
=
−
s
ρ
+
[
V
]
1-\frac{a_0}{a_0+su}=-s\rho^+[V]
1−a0+sua0=−sρ+[V]
1
+
s
ρ
+
[
V
]
=
a
0
a
0
+
s
u
1+s\rho^+[V]=\frac{a_0}{a_0+su}
1+sρ+[V]=a0+sua0
1
1
+
s
ρ
+
[
V
]
=
1
+
s
a
0
u
\frac{1}{1+s\rho^+[V]}=1+\frac{s}{a_0}u
1+sρ+[V]1=1+a0su
−
a
0
ρ
+
[
V
]
1
+
s
ρ
+
[
V
]
=
u
\frac{-a_0\rho^+[V]}{1+s\rho^+[V]}=u
1+sρ+[V]−a0ρ+[V]=u
代入:
[
p
]
=
−
ρ
+
2
(
a
0
+
s
−
a
0
ρ
+
[
V
]
1
+
s
ρ
+
[
V
]
)
2
[
V
]
[p]=-{\rho^+}^2(a_0+s\frac{-a_0\rho^+[V]}{1+s\rho^+[V]})^2[V]
[p]=−ρ+2(a0+s1+sρ+[V]−a0ρ+[V])2[V]
[
p
]
=
−
ρ
+
2
a
0
2
(
1
1
+
s
ρ
+
[
V
]
)
2
[
V
]
[p]=-{\rho^+}^2{a_0}^2(\frac{1}{1+s\rho^+[V]})^2[V]
[p]=−ρ+2a02(1+sρ+[V]1)2[V]
[
p
]
=
−
ρ
+
2
a
0
2
[
V
]
1
+
2
s
ρ
+
[
V
]
+
(
s
ρ
+
[
V
]
)
2
[p]=\frac{{-\rho^+}^2{a_0}^2[V]}{1+2s\rho^+[V]+(s\rho^+[V])^2}
[p]=1+2sρ+[V]+(sρ+[V])2−ρ+2a02[V]
求导:
d
[
p
]
d
[
V
]
=
−
ρ
+
2
a
0
2
(
1
−
s
ρ
+
[
V
]
)
(
1
+
s
ρ
+
[
V
]
)
3
\frac{d[p]}{d[V]}=\frac{-{\rho^+}^2a_0^2(1-s\rho^+[V])}{(1+s\rho^+[V])^3}
d[V]d[p]=(1+sρ+[V])3−ρ+2a02(1−sρ+[V])
铜:
a
0
=
3.94
k
m
⋅
s
−
1
,
s
=
1.489
,
ρ
0
=
8.93
g
⋅
c
m
−
3
a_0=3.94\,km\cdot s^{-1},\,s=1.489,\,\rho_0=8.93g\cdot cm^{-3}
a0=3.94km⋅s−1,s=1.489,ρ0=8.93g⋅cm−3
不锈钢:
a
0
=
4.569
k
m
⋅
s
−
1
,
s
=
1.490
,
ρ
0
=
7.896
g
⋅
c
m
−
3
a_0=4.569\,km\cdot s^{-1},\,s=1.490,\,\rho_0=7.896g\cdot cm^{-3}
a0=4.569km⋅s−1,s=1.490,ρ0=7.896g⋅cm−3
import matplotlib.pyplot as plt
import numpy as np
# EOS
rho0=8.93
s=1.489
a0=3.94
V0=1/rho0
V = np.arange(0.85*V0, 1.1*V0, 0.001)
p=-((rho0*a0)**2)*(V-V0)/(1+s*rho0*(V-V0))**2
K=V*((rho0*a0)**2)*(1-s*rho0*(V-V0))/(1+s*rho0*(V-V0))**3
fig, ax1 = plt.subplots()
ax1.plot(p,V)
ax2 = ax1.twinx()
ax2.plot(p, K,"r")
比较:
冲击波温升
(摘取自《材料的动力学行为》MA Meyers》)
用Grüneisen状态方程和热力学关系计算出
T
1
T_1
T1和
T
2
T_2
T2:
首先
0
→
1
0\to1
0→1,冲击加载:
热力学第一定律(内能=热能-外力功):
d
E
=
d
Q
−
d
W
dE=dQ-dW
dE=dQ−dW
d
W
=
P
d
V
且
d
Q
T
=
d
s
dW=PdV\,且 \, \frac{dQ}{T}=ds
dW=PdV且TdQ=ds
热力学表达式:
S
=
f
(
T
,
V
)
S=f(T,V)
S=f(T,V)
d
S
=
(
∂
S
∂
T
)
V
d
T
+
(
∂
S
∂
V
)
T
d
V
dS=\left(\frac{\partial S}{\partial T} \right)_VdT+\left(\frac{\partial S}{\partial V} \right)_TdV
dS=(∂T∂S)VdT+(∂V∂S)TdV
T
d
S
=
T
(
∂
S
∂
T
)
V
d
T
+
T
(
∂
S
∂
V
)
T
d
V
TdS=T\left(\frac{\partial S}{\partial T} \right)_VdT+T\left(\frac{\partial S}{\partial V} \right)_TdV
TdS=T(∂T∂S)VdT+T(∂V∂S)TdV
其中:
C
v
=
(
∂
E
∂
T
)
V
=
T
(
∂
S
∂
T
)
V
C_v=\left(\frac{\partial E}{\partial T} \right)_V=T\left(\frac{\partial S}{\partial T} \right)_V
Cv=(∂T∂E)V=T(∂T∂S)V
麦克斯韦关系:
d
A
=
−
P
d
V
−
S
d
T
dA=-PdV-SdT
dA=−PdV−SdT
可导出:
(
∂
S
∂
V
)
T
=
(
∂
P
∂
T
)
V
=
(
∂
P
∂
E
)
V
(
∂
E
∂
T
)
V
=
γ
V
C
v
\left(\frac{\partial S}{\partial V} \right)_T=\left(\frac{\partial P}{\partial T} \right)_V=\left(\frac{\partial P}{\partial E} \right)_V\left(\frac{\partial E}{\partial T} \right)_V=\frac{\gamma}{V}C_v
(∂V∂S)T=(∂T∂P)V=(∂E∂P)V(∂T∂E)V=VγCv
上面用到了Grüneisen方程:
(
∂
P
∂
E
)
V
=
γ
V
\left(\frac{\partial P}{\partial E} \right)_V=\frac{\gamma}{V}
(∂E∂P)V=Vγ
由上面推导可知:
d
E
=
C
v
d
T
+
T
γ
V
C
v
d
V
−
P
d
V
dE=C_vdT+T\frac{\gamma}{V}C_vdV-PdV
dE=CvdT+TVγCvdV−PdV
Hugoniot冲击线可知:
Δ
E
=
1
2
(
P
1
+
P
0
)
(
V
0
−
V
1
)
\Delta E=\frac{1}{2}(P_1+P_0)(V_0-V_1)
ΔE=21(P1+P0)(V0−V1)
沿Hugoniot线计算内能随体积的变化:
(
d
E
d
V
)
H
=
C
v
(
d
T
d
V
)
H
+
T
γ
V
C
v
−
P
\left(\frac{dE}{dV}\right)_H=C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v-P
(dVdE)H=Cv(dVdT)H+TVγCv−P
(
d
E
d
V
)
H
=
1
2
(
d
P
d
V
)
H
(
V
0
−
V
)
−
P
2
\left(\frac{dE}{dV}\right)_H=\frac{1}{2}\left(\frac{dP}{dV}\right)_H\left(V_0-V\right)-\frac{P}{2}
(dVdE)H=21(dVdP)H(V0−V)−2P
求解:
C
v
(
d
T
d
V
)
H
+
T
γ
V
C
v
=
1
2
(
d
P
d
V
)
H
(
V
0
−
V
)
+
P
2
C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v= \frac{1}{2}\left(\frac{dP}{dV}\right)_H\left(V_0-V\right)+\frac{P}{2}
Cv(dVdT)H+TVγCv=21(dVdP)H(V0−V)+2P
C
v
(
d
T
d
V
)
H
+
T
γ
V
C
v
=
1
2
(
ρ
+
2
a
0
2
(
1
−
s
ρ
+
[
V
]
)
(
1
+
s
ρ
+
[
V
]
)
3
(
V
−
V
0
)
−
ρ
+
2
a
0
2
[
V
]
1
+
2
s
ρ
+
[
V
]
+
(
s
ρ
+
[
V
]
)
2
)
C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v= \frac{1}{2}\left(\frac{{\rho^+}^2a_0^2(1-s\rho^+[V])}{(1+s\rho^+[V])^3} \left(V-V_0\right)-\frac{{\rho^+}^2{a_0}^2[V]}{1+2s\rho^+[V]+(s\rho^+[V])^2}\right)
Cv(dVdT)H+TVγCv=21((1+sρ+[V])3ρ+2a02(1−sρ+[V])(V−V0)−1+2sρ+[V]+(sρ+[V])2ρ+2a02[V])
C
v
(
d
T
d
V
)
H
+
T
γ
V
C
v
=
ρ
+
2
a
0
2
2
(
1
+
s
ρ
+
[
V
]
)
3
(
(
1
−
s
ρ
+
[
V
]
)
(
V
−
V
0
)
−
(
1
+
s
ρ
+
[
V
]
)
(
V
−
V
0
)
)
C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v= \frac{{\rho^+}^2a_0^2}{2(1+s\rho^+[V])^3}\left({(1-s\rho^+[V])} \left(V-V_0\right)-{(1+s\rho^+[V])}\left(V-V_0\right)\right)
Cv(dVdT)H+TVγCv=2(1+sρ+[V])3ρ+2a02((1−sρ+[V])(V−V0)−(1+sρ+[V])(V−V0))
C
v
(
d
T
d
V
)
H
+
T
γ
V
C
v
=
−
s
ρ
+
3
a
0
2
(
V
−
V
0
)
2
(
1
+
s
ρ
+
(
V
−
V
0
)
)
3
C_v\left(\frac{dT}{dV}\right)_H+T\frac{\gamma}{V}C_v= \frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{(1+s\rho^+(V-V_0))^3}
Cv(dVdT)H+TVγCv=(1+sρ+(V−V0))3−sρ+3a02(V−V0)2
将
T
T
T视为
y
y
y,
V
V
V视为
x
x
x,一阶微分方程:
y
′
+
γ
0
V
0
y
=
−
s
ρ
+
3
a
0
2
(
V
−
V
0
)
2
C
v
(
1
+
s
ρ
+
(
V
−
V
0
)
)
3
y'+\frac{\gamma_0}{V_0}y= \frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3}
y′+V0γ0y=Cv(1+sρ+(V−V0))3−sρ+3a02(V−V0)2
先求通解:
y
′
+
γ
0
V
0
y
=
0
y'+\frac{\gamma_0}{V_0}y=0
y′+V0γ0y=0
y
=
A
exp
(
−
γ
0
V
0
x
)
y=A\exp\left(- \frac{\gamma_0}{V_0}x\right)
y=Aexp(−V0γ0x)
变系数法求特解:
y
=
A
(
x
)
exp
(
−
γ
0
V
0
x
)
y=A(x)\exp\left(- \frac{\gamma_0}{V_0}x\right)
y=A(x)exp(−V0γ0x)
A
′
(
x
)
exp
(
−
γ
0
V
0
x
)
=
−
s
ρ
+
3
a
0
2
(
V
−
V
0
)
2
C
v
(
1
+
s
ρ
+
(
V
−
V
0
)
)
3
A'(x)\exp\left(- \frac{\gamma_0}{V_0}x\right)=\frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3}
A′(x)exp(−V0γ0x)=Cv(1+sρ+(V−V0))3−sρ+3a02(V−V0)2
A
(
V
)
=
∫
V
0
V
−
s
ρ
+
3
a
0
2
(
V
−
V
0
)
2
C
v
(
1
+
s
ρ
+
(
V
−
V
0
)
)
3
exp
(
γ
0
V
0
V
)
d
V
A(V)=\int_{V_0}^{V}{\frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3}\exp\left( \frac{\gamma_0}{V_0}V\right)dV}
A(V)=∫V0VCv(1+sρ+(V−V0))3−sρ+3a02(V−V0)2exp(V0γ0V)dV
由此可得:
T
=
A
exp
(
−
γ
0
V
0
V
)
+
∫
V
0
V
−
s
ρ
+
3
a
0
2
(
V
−
V
0
)
2
C
v
(
1
+
s
ρ
+
(
V
−
V
0
)
)
3
exp
(
γ
0
V
0
V
)
d
V
T=A\exp\left(- \frac{\gamma_0}{V_0}V\right)+\int_{V_0}^{V}\frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3}\exp\left( \frac{\gamma_0}{V_0}V\right)dV
T=Aexp(−V0γ0V)+∫V0VCv(1+sρ+(V−V0))3−sρ+3a02(V−V0)2exp(V0γ0V)dV
当
V
=
V
0
V=V_0
V=V0时,
T
=
T
0
T=T_0
T=T0:
T
=
T
0
exp
(
−
γ
0
V
0
(
V
−
V
0
)
)
+
∫
V
0
V
−
s
ρ
+
3
a
0
2
(
V
−
V
0
)
2
C
v
(
1
+
s
ρ
+
(
V
−
V
0
)
)
3
exp
(
γ
0
V
0
V
)
d
V
T=T_0\exp\left(- \frac{\gamma_0}{V_0}(V-V_0)\right)+\int_{V_0}^{V}\frac{-s{\rho^+}^3a_0^2(V-V_0)^2}{C_v(1+s\rho^+(V-V_0))^3}\exp\left( \frac{\gamma_0}{V_0}V\right)dV
T=T0exp(−V0γ0(V−V0))+∫V0VCv(1+sρ+(V−V0))3−sρ+3a02(V−V0)2exp(V0γ0V)dV
1
→
2
1\to2
1→2,等熵卸载:
T
d
S
=
C
v
d
T
+
T
γ
V
C
v
d
V
=
0
TdS=C_vdT+T\frac{\gamma}{V}C_vdV=0
TdS=CvdT+TVγCvdV=0
d
T
T
=
−
γ
V
d
V
\frac{dT}{T}=-\frac{\gamma}{V}dV
TdT=−VγdV
T
=
A
exp
(
−
γ
0
V
0
V
)
T=A\exp\left(-\frac{\gamma_0}{V_0}V \right)
T=Aexp(−V0γ0V)
T
=
T
1
exp
(
−
γ
0
V
0
(
V
−
V
1
)
)
T=T_1\exp\left(-\frac{\gamma_0}{V_0}(V-V_1) \right)
T=T1exp(−V0γ0(V−V1))卸载的终点应为:
P
2
=
0
P_2=0
P2=0,等熵过程:
d
E
=
−
P
d
V
dE=-PdV
dE=−PdVGrüneisen本构:
d
P
=
γ
V
d
E
=
−
γ
V
P
d
V
dP=\frac{\gamma}{V}dE=-\frac{\gamma}{V}PdV
dP=VγdE=−VγPdV
P
=
P
1
exp
(
−
γ
0
V
0
(
V
−
V
1
)
)
P=P_1\exp\left(-\frac{\gamma_0}{V_0}(V-V_1) \right)
P=P1exp(−V0γ0(V−V1))
求出:
P
1
P
2
=
T
1
T
2
\frac{P_1}{P_2}=\frac{T_1}{T_2}
P2P1=T2T1
P
2
P_2
P2 如果取标准大气压,
T
2
T_2
T2 极小(约为0K)与实际相差较远。Meyers书上取
V
2
=
V
0
V_2=V_0
V2=V0 计算的
T
2
T_2
T2