batch size 越大,学习率也要越大

166 篇文章 17 订阅

在深度学习中,批量大小(batch size)和学习率(learning rate)是两个重要的超参数,它们之间的关系可以影响模型的训练效果和收敛速度。当你增加批量大小时,通常也需要相应地增加学习率,原因包括:

  1. 梯度估计的准确性:较大的批量大小意味着每次迭代计算梯度时使用了更多的数据,这使得梯度估计更加准确,反映了整个数据集的特性。因此,可以使用更大的学习率来进行更大幅度的参数更新,而不会那么容易超过最优点。

  2. 方差减少:当你使用更大的批量时,每个批量的梯度方差会减少,因为它是基于更多样本的平均值。这意味着更新的方向更加稳定,允许你使用更大的学习率来加快学习过程。

  3. 学习信号:较小的批量可能会引入更多的噪声,这可以帮助模型逃离局部最小值,但同时也可能导致训练过程不稳定。较大的批量提供了更清晰的学习信号,因此可以安全地采用较大的学习率。

  4. 学习率调度:在实践中,训练深度学习模型时通常会使用学习率调度策略,如学习率衰减或预热(warm-up)。随着批量大小的增加,可能需要调整这些策略以适应更大的学习率。

  5. 优化器的动态:某些优化器(如Adam、RMSprop等)会考虑过去梯度的信息。当批量大小变大时,这些优化器的动态也会改变,可能需要调整学习率来适应这些变化。

然而,学习率的选择并不是简单地与批量大小成正比。找到合适的学习率需要考虑模型的具体结构、数据集的特性以及训练的目标。通常,这需要通过实验来确定,例如使用学习率寻找(learning rate finder)等技术。

此外,学习率和批量大小的增加也有其限制。如果学习率过高,可能会导致训练不稳定,甚至发散。如果批量大小过大,可能会导致内存不足,或者在某些情况下,过大的批量大小会导致模型泛化能力的下降。

因此,调整这些超参数时需要仔细考虑,并且通常需要依赖于交叉验证和其他超参数调优技术来找到最佳的组合。

在论文当中 Reducing BERT Pre-training Time from 3 Days to 76 Minutes中提到:如图所示:

结论:batchsize变大,学习率也要相应变大;本质是为了梯度的方差保持不变; 

1、为什么要保证梯度的方差不变呢?
   

  1. 优化稳定性:如果梯度的方差太大,那么每次参数更新可能会导致模型参数在损失函数的表面上发生剧烈波动,这会使得训练过程变得不稳定,难以收敛到最小值。

  2. 学习率调整:学习率决定了参数更新的步长。如果梯度的方差保持不变,那么可以更容易地找到一个合适的学习率,使得模型既能够有效地学习,又不会因为步长过大而跳过最优解。

  3. 收敛速度:保持梯度方差不变有助于维持收敛速度。如果梯度的方差减小,而学习率保持不变,那么实际的步长会减小,导致模型需要更多的迭代次数来收敛。

  4. 泛化能力:一些研究表明,较小的批量大小可能会引入噪声,这种噪声有助于模型跳出局部最小值,从而可能提高模型的泛化能力。然而,如果批量大小增加,梯度的方差减小,可能需要通过调整学习率来保持这种噪声的水平,以便保持模型的泛化能力。

  5. 超参数调优:在实际应用中,超参数(如学习率)的调优是一个复杂且耗时的过程。如果在改变批量大小时能够保持梯度方差不变,那么之前找到的最优学习率可能仍然适用,这可以减少调优的工作量。

  6. 扩展性:在分布式训练和大规模数据集上训练模型时,通常需要使用较大的批量大小。保持梯度方差不变有助于在增加计算资源时保持训练的一致性,从而使得模型能够在不同规模的数据集上以相似的方式训练。

总之,保持梯度方差不变是为了确保在调整批量大小时,训练过程的稳定性和效率不会受到影响,同时也有助于减少超参数调优的复杂性。然而,这只是一个理想化的目标,在实际操作中可能需要根据具体情况进行调整。

2. 为什么会存在梯度方差

假设batchsize为1来进行解释:

  1. 样本间的差异

    • 每个训练样本都是唯一的,可能产生不同的梯度。
    • 不同样本可能位于损失函数曲面的不同位置,导致梯度方向和大小的变化。
  2. 模型的非线性性

    • 神经网络通常包含非线性激活函数,使得不同输入可能产生显著不同的梯度。
  3. 参数空间的复杂性

    • 损失函数在高维参数空间中通常是非凸的,不同区域的梯度特性可能大不相同。
  4. 噪声和异常值

    • 单个样本可能包含噪声或是异常值,这会导致梯度的显著变化。
  5. 训练过程中的变化

    • 随着模型参数的更新,相同样本在不同训练阶段可能产生不同的梯度
       

示例代码

以下是一个 Python 代码示例,展示了在 batch size = 1 的情况下梯度的方差:

import torch
import torch.nn as nn
import torch.optim as optim

# 定义一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc = nn.Linear(10, 1)
    
    def forward(self, x):
        return self.fc(x)

# 创建模型实例
model = SimpleNet()

# 定义损失函数
criterion = nn.MSELoss()

# 生成随机数据
num_samples = 1000
X = torch.randn(num_samples, 10)
y = torch.randn(num_samples)

# 计算多个单样本的梯度
num_iterations = 100
gradients = []

for i in range(num_iterations):
    # 随机选择一个样本
    idx = torch.randint(0, num_samples, (1,))
    x_sample = X[idx]
    y_sample = y[idx]
    
    # 前向传播和反向传播
    model.zero_grad()
    output = model(x_sample)
    loss = criterion(output, y_sample)
    loss.backward()
    
    # 存储梯度
    gradients.append(model.fc.weight.grad.clone())

# 计算梯度的方差
grad_tensor = torch.stack(gradients)
grad_variance = torch.var(grad_tensor)

print(f"Gradient variance (batch size = 1): {grad_variance.item()}")

这个例子展示了在使用单个样本(batch size = 1)进行多次迭代时,梯度仍然存在方差。

实际影响

  1. 高方差

    • 使用 batch size = 1 通常会导致较高的梯度方差。
    • 这可能导致训练过程中参数更新的高度波动。
  2. 噪声更新

    • 单样本梯度可能包含更多噪声,使得参数更新更加随机。
  3. 收敛特性

    • 高方差可能导致训练过程中的震荡,但也可能帮助模型跳出局部最小值。
  4. 学习率敏感性

    • 由于梯度的高方差,学习率的选择变得更加关键。

对比大批量梯度

相比之下,较大的 batch size 会通过平均多个样本的梯度来降低方差:

  • 大 batch size:梯度是多个样本梯度的平均,方差较小。
  • 小 batch size(特别是 batch size = 1):每次只使用单个样本的梯度,方差较大。

结论

即使在 batch size = 1 的情况下,梯度仍然存在方差,这是由于数据的多样性、模型的非线性性和优化过程的随机性所导致的。理解这一点对于选择适当的优化策略和调整超参数(如学习率)非常重要。在实践中,通常会使用大于 1 的 batch size 来平衡计算效率和梯度估计的准确性。

根据引用,在以前的实验中,学习率batchsize通常是成正比例变化的。也就是说,如果batchsize增加,学习率也会相应增加。这是因为较大的batchsize可以提供更多的样本信息,并且需要更大的学习率来更新参数以获得更好的训练效果。 然而,根据引用,有一种被称为梯度累加的技巧可以实现batchsize的变相扩大。通过设置一个称为accumulation_steps的参数,可以将batchsize扩大多倍。在这种情况下,学习率的设置可能需要相应地调整,以适应扩大后的batchsize。因此,当使用梯度累加时,扩大batchsize可能会对学习率产生影响。 另外,根据引用的描述,学习率对训练结果的影响可能会因网络结构的不同而有所差异。在一些实验中,即使在相同的全局batchsize下,单机多卡和多机多卡的训练结果仍然存在较大的差异。这表明,学习率的设定可能需要根据具体的网络结构和训练环境进行调整。 综上所述,当batchsize发生变化时,学习率的调整可能是需要考虑的因素,尤其在使用梯度累加或不同的网络结构和训练环境下。具体的调整策略可能需要根据实际情况进行评估和实验。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [深度学习多机多卡batchsize学习率的关系](https://blog.csdn.net/qq_37668436/article/details/124293378)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [深度学习batch_size学习率 及如何调整](https://blog.csdn.net/pipisorry/article/details/109192443)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值