冰山查询――iceberg query
在数据仓库领域有一个概念叫Iceberg query,中文一般翻译为“冰山查询”。冰山查询在一个属性或属性集上计算一个聚集函数,以找出大于某个指定阈值的聚集值。
以销售数据为例,你想产生这样的一个顾客-商品对的列表,这些顾客购买商品的数量达到3件或更多。这可以用下面的冰山查询表示:
Select P.cust_ID, P.item_ID, SUM(P.qty)
From Purchase P
Group by P.cust_ID, P.item_ID
Having SUM(P.qty)>=3
这种在给出大量输入数据元组的情况下,使用having字句中的阈值来进行过滤的查询方法就叫做冰山查询。输出结果可以看作“冰山顶”,而“冰山”是输入数据。
这种冰山查询在数据仓库的数据概况分析阶段、数据质量检查阶段和数据挖掘的购物篮分析中都经常使用。而且,冰山查询也是面试中出现频率非常高的一道题,经常用来检测SQL能力。
操作集市――oper mart
在数据仓库领域有一个概念叫Oper Mart,中文一般翻译为“操作集市”。操作集市是为了企业战术性的分析提供支持,它的数据来源是操作数据存储(ODS)。它是ODS在分析功能上的扩展,使用户可以对操作型数据进行多维分析。
一个操作集市应该有如下特征:
1.操作集市是ODS的子集,数据来源于ODS,用于战略分析和报表。
2.操作集市中的数据和ODS中的数据同步更新。
3.操作集市以多维技术进行建模,即星型结构。
4.操作集市是一个临时的结构,当不在需要时会清掉所有数据,即不保存历史数据。
操作集市和数据集市很相似,但是它不能用来取代用于战略性分析的数据集市。由于操作集市的数据来源于ODS,所以它的数据比数据集市的数据要新。但是出于容量的考虑,操作集市中不保存历史数据,是一个临时的结构。
操作数据存储――operational data store
Kimball对操作数据存储的定义是,面向主题的、集成的、经常更新的细节数据存储,用集成的数据来支持事务系统。Kimball也认可Inmon对ODS的分类,但是他认为ODS应该以星型结构来进行建模。
虽然Kimball对操作数据存储(ODS)的定义和Inmon基本上一样,但是他对操作数据存储的理解、作用与实现和Inmon有着较大的不同。
Kimball认为ODS在两种情况下是需要的:第一种情况是提供操作型报表,这些报表需要提供面向主题的、集成的数据,所以操作型的源系统无法提供;这些报表和数据仓库中的报表也不相同,因为它们可以是一些定制好的,写死在程序中的报表。第二种情况是需要提供实时的信息时,由于数据仓库的更新频率一般都是24小时,而用户会有更急切的需求来了解数据源的信息,这时,建立操作数据存储是很有必要的。
对于ODS是保存最细粒度数据的地方的说法,Kimball认为对于最细粒度数据,即原子数据层,应该保存在数据仓库中,而且应该置于维度框架和总线架构中。
代理关键字--surrogate key
在数据仓库领域有一个概念叫Surrogate key,中文一般翻译为“代理关键字”。代理关键字一般是指维度表中使用顺序分配的整数值作为主键,也称为“代理键”。代理关键字用于维度表和事实表的连接。
代理关键字的称呼有surrogate keys,meaningless keys,integer keys,nonnatural keys,artificial keys,synthetic keys等。与之相对的自然关键字的称呼有natural keys,samat keys等。
在Kimball的维度建模领域里,是强烈推荐使用代理关键字的。在维度表和事实表的每一个联接中都应该使用代理关键字,而不应该使用自然关键字或者智能关键字(Smart Keys)。数据仓库中的主键不应该是智能的,也就是说,要避免通过主键的值就可以了解一些业务信息。当然,退化维度作为事实表的复合主键之一时例外。
使用代理关键字,有很多优点。
1.使用代理关键字能够使数据仓库环境对操作型环境的变化进行缓冲。也就是说,当数据仓库需要对来在多个操作型系统的数据进行整合时,这些系统中的数据有可能缺乏一致的关键字编码,即有可能出现重复,这时代理关键字可以解决这个问题。
2.使用代理关键字可以带来性能上的优势。和自然关键字相比,代理关键字很小,是整型的,可以减小事实表中记录的长度。这样,同样的IO就可以读取更多的事实表记录。另外,整型字段作为外键联接的效率也很高。
3.使用代理关键字可以建立一些不存在的维度记录,例如“不在促销之列”,“日期待定”,“日期不可用”等维度记录。
4.使用代理关键字可以用来处理缓慢变化维。维度表数据的历史变化信息的保存是数据仓库设计的实施中非常重要的一部分。Kimball的缓慢变化维处理策略的核心就是使用代理关键字。
<