什么是Query理解和Query改写?

Query理解是搜索引擎和NLP领域的核心技术,涉及查询意图识别、分词、扩展和改写等,利用机器学习和深度学习提升用户体验。查询改写通过拼写纠正、同义词替换等方式优化搜索结果,实现个性化和智能化匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Query理解(Query Understanding)是指在搜索引擎、推荐系统、自然语言处理等领域对用户查询(Query)的内容进行分析和理解的过程。目的是为了更准确地把握用户的意图和需求,从而提供更相关、更精准的信息或答案。Query理解是提升搜索质量和用户体验的关键环节之一。

Query理解通常包括以下几个方面:

  1. 查询意图识别(Query Intent Recognition)

    • 确定用户提交查询的目的是什么,比如是想找到某个具体的网站、获取某个问题的答案,还是寻找某种服务。意图大致可以分为信息性查询、导航性查询和交易性查询。
  2. 查询分词(Query Tokenization)

    • 对于非英语等需要分词的语言,如中文、日语,需要将查询字符串分解成有意义的词或短语单元,以便进一步处理。
  3. 查询扩展(Query Expansion)

    • 通过同义词替换、拼写纠正等手段扩展查询,使搜索结果能覆盖用户可能的意图。比如用户搜索“自行车”,系统也可能考虑“单车”、“自行车修理”等相关查询。
  4. 查询改写(Query Rewriting)

    • 根据用户的查询历史、用户画像、地理位置等信息,重写用户的原始查询,以提高搜索结果的相关性和准确性。例如,将“附近的咖啡店”重写为“纽约市中央公园附近的咖啡店”。

Query

### 关于Cadence 17.2版本中Pspice的教程 #### 安装指南 对于希望安装Cadence PSpice 17.2版本的用户来说,需注意几个关键步骤。当点击安装Cadence软件时,应指定添加安装包路径以及设定不含空格汉字字符的安装路径[^1]。完成基础软件部署后,还需通过加入Hotfix文件的方式安装必要的更新补丁。最后,在一切设置妥当之后,务必记得重启计算机以使更改生效。 #### 绘制原理图 一旦上述准备工作就绪,则可以在重新启动后的环境中利用OrCAD Capture CIS工具着手绘制所需的电路原理图。此阶段涉及的具体操作包括但不限于元件的选择、放置及其间的连接构建等动作。 #### 创建自定义电路模块 针对那些想要进一步定制化工作流或者提高效率的技术人员而言,掌握如何基于个人需求创建专属的电路组件显得尤为重要。在Cadence PSpice环境下,这意呸着能够把一系列预设好的子电路打包成独立单元以便重复调用或分享给团队成员。具体实现过程涵盖了从草稿构思到最后成品导出的一系列环节[^2]。 #### 设计流程概览 在整个电子设计自动化领域里,由概念验证直至最终产品成型往往遵循一套既定的工作模式。对于采用Cadence平台开展工作的工程师们来讲,这套方法论通常始于案例研究进而过渡至详尽的设计实施;期间会经历诸如原理图表绘、错误检测修正、性能测试评估等多个重要节点直到所有目标达成为止[^3]。 #### 原理图设计概述 深入探讨一下项目结构的话就会发现,“Design Resources”部分主要负责存储整个项目的配置信息。“Outputs”则用于汇总各类中间产物或是终期报告文档。“Referenced Projects”允许设计师轻松关联其他辅助性的外部资料库从而促进跨部门协作交流活动顺利展开。值得注意的是如果当前任务涉及到仿真的话那么这里还会额外显示出专门用来支持此类作业的相关条目——即所谓的“PSpice Resources”。 ```python # Python代码示例仅作为装饰用途,并不实际参与解释说明逻辑 def example_function(): pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值