深度学习训练总结及注意事项-简化版

该文详细描述了深度学习中图像标注的步骤,包括使用jpg文件制作标签,处理文件夹和文件名,确保图片和标签对应,并调整训练参数如classes和max_batches。还强调了GPU设置、损失函数的观察以及测试阶段的置信度阈值设定。此外,文章提到了模型微调和学习率调整对训练效果的影响。
摘要由CSDN通过智能技术生成

注:1. 制作标签,必须用jpg文件
2. 文件夹改名换位置后,程序需要重新修改
3. 文件名不能带空格
4. 可以统一更换后缀名
5. 图片名和标签名要一一对应,打完标签不要随便动,检查生成的label文件
6.打标签之前要把没用的照片删除
7.看打完标签是否保存
8.没有打的图片不要保存
9. 测试的时候val文件类别要修改(训练结果不好,关键所在)
10.重新聚类生成anchors

流程:
修改makefle文件,算力的代码修改成自己显卡的算力

  1. 标签放好(注意rename.py)
    1.1 生成Main目录下的txt文件
    1.2 voc_label.py, 修改classes(运行的时候有时候出问题,复制一个好的过来,多改改)

  2. 配置
    2.1修改cfg/voc.data
    2.2 修改cfg/yolov3-voc.cfg
    filters = 3*(5+classes数目) classes = 本次训练目标数
    修改max_batches(作者声明最好是2000*训练目标个数,但不要小于4000)和steps(max_batches的80%,90%,降低学习率阈值)
    当GPU显存比较小时将subdivisions调大batch/subdivisions的值为训练时一次传入训练的图片)

    2.3 修改data/voc.names

  3. 训练:
    ./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg_train darknet53.conv.74
    当avg低于0.06时即可停止训练了(尽量低)
    训练的loss降至0.1以下就可以进行测试了

  4. 测试(遇到的问题:没框,阈值问题,训练时间不够)
    ./darknet detector test cfg/voc.data cfg/yolov3-voc.cfg_val backup/yolo3-100.weights -thresh 0.1 置信度阈值 显示置信度在10%以上的 bbox

-thresh 0.25
5.4 训练完后,对模型进行微调微调继续训练新数据样本
./darknet detector train cfg/voc.data cfg/yolov3-voc.cfg_train backup/yolov3-voc.backup -gpus 0 -clear
这样重新训练的模型就是在原模型微调的基础上训练的结果,这样模型的收敛速度较快,迭代次数将从0开始计算.

学习率:如果是两个gpu则,0.001/2

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值