k次B样条曲线过某个控制点的条件是,是在该点有K个重合的控制点;下面的动画在标示控制点序号时有些不严谨,没有标示出控制点的重合度。
这个动画中可以清晰的看出,为什么控制点数比B样条曲线的阶段大1;
高阶的B样条曲线是由低阶的B样条曲线组合而来;动画演示了B样条曲线曲控制点正算曲线的规律;
一阶线性:
二阶:
两组控制点各自做一阶变化,中介点联接,再次做一阶变化,形成的点(二阶描述点)的轨迹就是阶二阶B样条曲线
四阶:
四阶曲线同样按上述规律变化,先中介点推出2阶描述点,再由2阶描述点推出3阶描述点,直至4阶描述点即可
修改B样曲线形状
- K阶B样条曲线过控制点,需要该控制点有K阶重合度
- K阶B样条曲线变成直线段,相邻的K+1个控制点共线
- 强制B-样条曲线与控制多线一边相切,需要Pi-p,Pi-p+1=Pi-P+2=...Pi-1=Pi,和Pi+1共线
节点
设U 是m + 1个非递减数的集合,u0 <= u2 <= u3 <= ... <= um。ui称为节点(knots), 集合U 称为节点向量(knot vector), 半开区间[ui, ui+1) 是第i个节点区间(knot span)。注意某些ui可能相等,某些节点区间会不存在。如果一个节点 ui 出现 k 次 (即,ui = ui+1 = ... = ui+k-1), 其中 k > 1, ui 是一个重复度(multiplicity)为k 的多重节点,写为 ui(k)。 否则,如果ui只出现一次,它是一个简单节点。如果节点等间距(即, ui+1 - ui 是一个常数,对 0 <= i <= m - 1),节点向量或节点序列称为均匀的;否则它是非均匀的