英伟达H20核心价值和高效运用揭秘

19a5cf6a1c4c1c71fa58ca1ac8d56d13.jpeg

 

揭秘英伟达H20:核心价值和高效运用的双重解读

   

2023年,ChatGPT的问世引爆了AIGC领域。在这场"百模大战"中,国内外头部企业纷纷以训练为主。随着模型训练逐渐成熟,大规模应用阶段到来,推理成为了大模型落地的主旋律。

bb755beb3130f1f007ee0f1aef04a330.jpeg

作为新一代明星机型,NVIDIA HGX H20备受瞩目。尽管其FP16、INT8等主要参数相较前辈有所降低,但仍具有显著优势。

2、支持NVLink 900GB/s高速互联,兼容8路HGX,助力构建AI集群,大幅提升大模型训练效果;在推理测试中表现卓越,超越前代。

f47eb171351e64c7369054ec6f855427.jpeg

H20 for 大模型训练

H20凭借卓越的卡间互联带宽和PCIe Gen5支持,搭配400GbE集群网络,实现线性加速比近1,为大规模集群搭建提供了理想之选。

根据当前测试结果,H20在执行大型模型训练任务时,采用BF16混合精度训练。在集群规模较小(如512 x H20)的情况下,H20的训练吞吐量可达到A8XX训练吞吐量的62%,即在集群规模较小时,H20性能约为A8XX性能的60%。而在集群规模较大(如4096 x H20)的情况下,H20的训练吞吐量可达到A8XX训练吞吐量的70%,即在集群规模较大时,H20性能约是A8XX性能的70%。

Huawei 910B-A2(over A8XX)

Nvidia H20(over A8XX)

Nvidia A8XX

较小集群规模(~512卡)

75% ~ 85%

60% ~ 70%

100%

较大集群规模(~4096卡)

60% ~ 70%

65% ~ 75%

90%(线性加速比)

FP8计算

不支持

大于100%

100%

值得注意的是,FP8混合精度训练尚处于发展阶段,目前仅适用于规模较小的LLM模型(如34B及以下)。然而,随着技术的持续创新,FP8混合精度训练有望在未来成为主流技术。

H20 for 大模型推理

H20以其卓越的显存配置和出色的FP8峰值算力,成为LLM推理任务的理想之选。相较于A8XX,H20在大模型推理任务中(特别是LLM推理),性能提升高达20%(例如,对比显存带宽:4/3.35 ≈ 1.19 = 120%)。

"随着LLM模型参数规模的急速扩大,具备大容量显存的AI芯片在推理任务中的优势将更加突出。这意味着,H20用于执行大型LLM模型的推断,不仅更高效,而且更具性价比。"

Huawei 910B-A2(over A8XX)

Nvidia H20(over A8XX)

Nvidia A8XX

推理实例(单机8卡)

75% ~ 85%

100% ~ 120%

100%

推理实例(32卡)

70% ~ 80%

100% ~ 125%

100%

结语

综上所述, H20的核心价值体现在:

1、安全合规,官方保修;

2、高效组建大规模集群用于大模型训练,如FP8混合精度训练;

3、超大规模LLM推理表现超越前辈,擅长FP8计算;

4、价格适中,性价比极高

您好,H20是一种高性能硬件,可以用于大模型训练任务。如果您的推理服务中的前辈机性能不足,可以考虑购置H20来代替前辈机进行大模型训练任务。这样可以提高推理性能,同时成本也会下降。

75ad44eb4d09025e0f41f002c5556f65.jpeg

777b2905ce204a6fe21a10a87bf6cf33.jpeg

8cbe0f0d2a0228761816ed85d93c9966.jpeg

 

-对此,您有什么看法见解?-

-欢迎在评论区留言探讨和分享。-

### 在无英伟达显卡环境下的大模型训练与部署 尽管Nvidia GPU因其CUDA生态系统强大的并行计成为大模型训练的首选设备[^1],但在某些情况下无法使用Nvidia显卡时,仍然存在其他可行的替代方案。以下是几种可能的选择: #### 1. 使用AMD GPU AMD提供了基于ROCm平台的支持,这是一个开源软件栈,旨在为异构计提供全面解决方案。虽然目前ROCm的功能相较于CUDA仍有一定差距,但它已经能够支持部分主流深度学习框架(如PyTorchTensorFlow)。对于希望利用非Nvidia硬件的大规模项目来说,这是值得尝试的方向之一。 ```bash # 安装ROCM工具链示例命令 sudo apt-get update && sudo apt-get install rocm-dkms hipblas hipsparse miopen-hip ``` 需要注意的是,在实际操作过程中可能会遇到兼容性性能优化方面的问题[^3]。 #### 2. 利用Intel CPU进行推理或轻量级训练 当完全缺乏任何类型的GPU资源时,可以考虑仅依靠现代多核处理器来进行工作负载处理。英特尔最新一代至强可扩展处理器通过集成AVX-512指令集等方式显著提升了浮点运效率,从而使得即使是在纯CPU环境中也能完成一些较为简单的机器学习任务[^4]。 然而值得注意的是,相比于专门设计用于矩阵乘法加速的任务导向型图形芯片而言,传统通用目的中央处理器通常会表现出较低的数据吞吐率以及更长的整体执行时间长度。因此这种方法更适合应用于小型网络或者只需要少量参数调整的情况之下。 #### 3. Google TPU作为云端选项 如果本地基础设施受限,则可以选择借助云服务提供商所供应的专业化ASIC产品——比如谷歌推出的张量处理单元(Tensor Processing Unit,简称TPU)来满足相应的需求。这些定制化的集成电路专为神经网络而生,并且往往能够在单位成本下实现超越常规GPUs的表现水平[^5]。 不过也要意识到采用此类外部依赖意味着额外开销费用增加的同时还伴随着潜在的安全隐患考量等因素影响最终决策制定过程之中。 --- ### 结论 综上所述,即便面临没有可用NVIDIA GPUs的情形下依旧存在着多种途径可供探索实践以达成目标效果;无论是转投竞争对手阵营寻求技术支持还是充分利用现有条件挖掘潜均不失为明智之举。当然每种策略背后都伴随特定优劣势权衡取舍需谨慎评估后再做定夺。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

科技互联人生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值