自动驾驶 QP 路径规划基本原理

Given a reference line and road boundaries, we use QP (Quadratic Programming) to generate a path that satisfy some predefined constraints.

1. A standard form of QP

arg ⁡ min ⁡ 1 2 X T H X + f T x \arg\min\frac12X^THX+f^Tx argmin21XTHX+fTx
s . t . A i e q x ≤ b i e q s.t.\enspace A_{ieq}x\leq b_{ieq} s.t.Aieqxbieq
A e p x ≤ b e p \enspace \enspace \enspace A_{ep}x\leq b_{ep} Aepxbep

2. Problem definition

In Path optimization, the object x x x is l l l, l ˙ \dot{l} l˙ and l ¨ \ddot{l} l¨ under Frenet coordinate, which is denoted by:
[ l 0 , l 1 , . . . , l n , l 0 ˙ , . . . , l n ˙ , l 0 ¨ , . . . , l n ¨ ] T [l_0,l_1,...,l_n,\dot{l_0},...,\dot{l_n},\ddot{l_0},...,\ddot{l_n}]^T [l0,l1,...,ln,l0˙,...,ln˙,l0¨,...,ln¨]T

3. Cost function

We define a cost function consisting of four terms:

  1. lateral offset term: x i 2 x_i^2 xi2
  2. lateral velocity term: x ˙ i 2 \dot{x}_i^2 x˙i2
  3. lateral acceleration term: x ¨ i 2 \ddot{x}_i^2 x¨i2
  4. lateral jerk term: x ⋯ i 2 \overset{\cdots}{x}_i^2 xi2

The cost function in discrete form is:
J ( x ) = w x ∑ i = 0 n − 1 x i 2 + w x ˙ ∑ i = 0 n − 1 x ˙ i 2 + w x ¨ ∑ i = 0 n − 1 x ¨ i 2 + w x ⋯ ∑ i = 0 n − 2 x ⋯ i 2 \mathrm{J}(\mathrm{x})=w_x\sum_{i=0}^{n-1}x_i^2+w_{\dot{x}}\sum_{i=0}^{n-1}\dot{x}_i^2+w_{\ddot{x}}\sum_{i=0}^{n-1}\ddot{x}_i^2+w_{\overset{\cdots}{x}}\sum_{i=0}^{n-2}\overset{\cdots}{x}_i^2 J(x)=wxi=0n1xi2+wx˙i=0n1x˙i2+wx¨i=0n1x¨i2+wxi=0n2xi2

Rewrite discrete cost function form to matrix form.

(1) lateral offset term

The first term: w x ∑ i = 0 n − 1 x i 2 w_x\sum_{i=0}^{n-1}x_i^2 wxi=0n1xi2

[ x 0 x 1 ⋮ x n x 0 ˙ ⋮ x n ˙ x 0 ¨ ⋮ x n ¨ ] T [ 2 w x ⋱ 2 w x 0 ⋱ 0 ] [ x 0 x 1 ⋮ x n x 0 ˙ ⋮ x n ˙ x 0 ¨ ⋮ x n ¨ ] \begin{bmatrix}x_{0}\\x_{1}\\\varvdots\\x_{n}\\\dot{x_{0}}\\\varvdots\\\dot{x_{n}}\\\ddot{x_{0}}\\\varvdots\\\ddot{x_{n}}\end{bmatrix}^T\begin{bmatrix}2w_{x}\\&\ddots\\&&2w_{x}\\&&&0\\&&&&\ddots\\&&&&&0\end{bmatrix}\begin{bmatrix}x_{0}\\x_{1}\\\varvdots\\x_{n}\\\dot{x_{0}}\\\varvdots\\\dot{x_{n}}\\\ddot{x_{0}}\\\varvdots\\\ddot{x_{n}}\end{bmatrix} x0x1xnx0˙xn˙x0¨xn¨ T 2wx2wx00 x0x1xnx0˙xn˙x0¨xn¨

(2) lateral velocity term

The second term: w x ˙ ∑ i = 0 n − 1 x ˙ i 2 w_{\dot{x}}\sum_{i=0}^{n-1}\dot{x}_i^2 wx˙i=0n1x˙i2

[ x 0 x 1 ⋮ x n x 0 ˙ ⋮ x n ˙ x 0 ¨ ⋮ x n ¨ ] T [ 0 ⋱ 0 2 w x ˙ ⋱ 2 w x ˙ 0 ⋱ 0 ] [ x 0 x 1 ⋮ x n x 0 ˙ ⋮ x n ˙ x 0 ¨ ⋮ x n ¨ ] \begin{bmatrix}x_{0}\\x_{1}\\\varvdots\\x_{n}\\\dot{x_{0}}\\\varvdots\\\dot{x_{n}}\\\ddot{x_{0}}\\\varvdots\\\ddot{x_{n}}\end{bmatrix}^T\begin{bmatrix}0&&&&&&&&\\&\ddots&&&&&&&\\&&0&&&&&&\\&&&2w_{\dot{x}}&&&&&\\&&&&\ddots&&&&\\&&&&&2w_{\dot{x}}&&&\\&&&&&&0&&\\&&&&&&&\ddots\\&&&&&&&&0\\\end{bmatrix}\begin{bmatrix}x_{0}\\x_{1}\\\varvdots\\x_{n}\\\dot{x_{0}}\\\varvdots\\\dot{x_{n}}\\\ddot{x_{0}}\\\varvdots\\\ddot{x_{n}}\end{bmatrix} x0x1xnx0˙xn˙x0¨xn¨ T 002wx˙2wx˙00 x0x1xnx0˙xn˙x0¨xn¨

(3) lateral acceleration term

The third term: w x ¨ ∑ i = 0 n − 1 x ¨ i 2 w_{\ddot{x}}\sum_{i=0}^{n-1}\ddot{x}_i^2 wx¨i=0n1x¨i2

[ x 0 x 1 ⋮ x n x 0 ˙ ⋮ x n ˙ x 0 ¨ ⋮ x n ¨ ] T [ 0 ⋱ 0 2 w x ¨ ⋱ 2 w x ¨ ] [ x 0 x 1 ⋮ x n x 0 ˙ ⋮ x n ˙ x 0 ¨ ⋮ x n ¨ ] \begin{bmatrix}x_{0}\\x_{1}\\\varvdots\\x_{n}\\\dot{x_{0}}\\\varvdots\\\dot{x_{n}}\\\ddot{x_{0}}\\\varvdots\\\ddot{x_{n}}\end{bmatrix}^T\begin{bmatrix}0\\&\ddots\\&&0\\&&&2w_{\ddot{x}}\\&&&&\ddots\\&&&&&2w_{\ddot{x}}\end{bmatrix}\begin{bmatrix}x_{0}\\x_{1}\\\varvdots\\x_{n}\\\dot{x_{0}}\\\varvdots\\\dot{x_{n}}\\\ddot{x_{0}}\\\varvdots\\\ddot{x_{n}}\end{bmatrix} x0x1xnx0˙xn˙x0¨xn¨ T 002wx¨2wx¨ x0x1xnx0˙xn˙x0¨xn¨

(4) lateral jerk term

The forth term: w x ⋯ ∑ i = 0 n − 2 x ⋯ i 2 w_{\overset{\cdots}{x}}\sum_{i=0}^{n-2}\overset{\cdots}{x}_i^2 wxi=0n2xi2
Since we do not have x ⋯ \overset{\cdots}{x} x form in our cost function, we need to use x ¨ \ddot{x} x¨ to represent the x ⋯ \overset{\cdots}{x} x term:

x ⋯ i = x ¨ i + 1 − x ¨ i Δ s \overset{\cdots}{x}_i=\frac{\ddot{x}_{i+1}-\ddot{x}_i}{\Delta s} xi=Δsx¨i+1x¨i
∑ i = 0 n − 2 x ⋯ i 2 = ∑ i = 0 n − 2 ( x ¨ i + 1 − x ¨ i ) 2 = ∑ i = 0 n − 2 ( x ¨ i + 1 − x ¨ i ) T ( x ¨ i + 1 − x ¨ i ) \sum_{i=0}^{n-2}\overset{\cdots}{x}_i^2=\sum_{i=0}^{n-2}(\ddot{x}_{i+1}-\ddot{x}_{i})^{2}=\sum_{i=0}^{n-2}(\ddot{x}_{i+1}-\ddot{x}_{i})^{T}(\ddot{x}_{i+1}-\ddot{x}_{i}) i=0n2xi2=i=0n2(x¨i+1x¨i)2=i=0n2(x¨i+1x¨i)T(x¨i+1x¨i)

in matrix term:

2 Δ s 2 [ x ¨ 0 x ¨ 1 ⋮ x ¨ n ] T [ − 1 1 − 1 1 ⋱ ⋱ − 1 1 0 ] ⏟ Q x ⋯ ~ T [ − 1 1 − 1 1 ⋱ ⋱ − 1 1 0 ] ⏟ Q x ⋯ ~ [ x ¨ 0 x ¨ 1 ⋮ x ¨ n ] \frac{2}{\Delta s^{2}}\begin{bmatrix}\ddot{x}_{0}\\\ddot{x}_{1}\\\vdots\\\ddot{x}_{n}\end{bmatrix}^{T}\underbrace{{\begin{bmatrix}-1\\1&-1\\&1&\ddots\\&&\ddots&-1\\&&&1&0\end{bmatrix}}}_{{\tilde{Q_{\overset{\cdots}{x}}}}^{T}}\underbrace{{\begin{bmatrix}-1&1\\&-1&1\\&&\ddots&\ddots\\&&&-1&1\\&&&&0\end{bmatrix}}}_{{\tilde{Q_{\overset{\cdots}{x}}}}}\begin{bmatrix}\ddot{x}_{0}\\\ddot{x}_{1}\\\vdots\\\ddot{x}_{n}\end{bmatrix} Δs22 x¨0x¨1x¨n TQx~T 1111110 Qx~ 1111110 x¨0x¨1x¨n

Let’s define the respective Q matrix for x ⋯ i \overset{\cdots}{x}_i xi term as Q x ⋯ Q_{\overset{\cdots}{x}} Qx then

Q x ⋯ = Q x ⋯ ~ T Q x ⋯ ~ Q_{\overset{\cdots}{x}}=\tilde{Q_{\overset{\cdots}{x}}}^{T}\tilde{Q_{\overset{\cdots}{x}}} Qx=Qx~TQx~

We have

Q x ⋯ = [ 1 − 1 − 1 2 − 1 − 1 2 ⋱ ⋱ ⋱ ⋱ ⋱ 2 − 1 − 1 2 − 1 − 1 1 ] Q_{\overset{\cdots}{x}}=\begin{bmatrix}1&-1\\-1&2&-1\\&-1&2&\ddots\\&&\ddots&\ddots&\ddots\\&&&\ddots&2&-1\\&&&&-1&2&-1\\&&&&&-1&1\end{bmatrix} Qx= 11121122112111

verify

Let’s use a specific case to verify the Q x ⋯ Q_{\overset{\cdots}{x}} Qx, let’s say we have four points [ x 0 , x 1 , x 2 , x 3 ] \begin{bmatrix}x_0,x_1,x_2,x_3\end{bmatrix} [x0,x1,x2,x3], now define the x ⋯ i 2 \overset{\cdots}{x}_i^2 xi2 term:

∑ i = 0 2 x ⋯ i 2 = ∑ i = 0 2 ( x ¨ i + 1 − x ¨ i ) 2 = ( x ¨ 1 − x ¨ 0 ) 2 + ( x ¨ 2 − x ¨ 1 ) 2 + ( x ¨ 3 − x ¨ 2 ) 2 \sum_{i=0}^2\overset{\cdots}{x}_i^2=\sum_{i=0}^2(\ddot{x}_{i+1}-\ddot{x}_i)^2=(\ddot{x}_1-\ddot{x}_0)^2+(\ddot{x}_2-\ddot{x}_1)^2+(\ddot{x}_3-\ddot{x}_2)^2 i=02xi2=i=02(x¨i+1x¨i)2=(x¨1x¨0)2+(x¨2x¨1)2+(x¨3x¨2)2

Use the matrix form:

[ x ¨ 0 x ¨ 1 x ¨ 2 x ¨ 3 ] [ 1 Δ s 2 − 1 Δ s 2 0 0 − 1 Δ s 2 2 Δ s 2 − 1 Δ s 2 0 0 − 1 Δ s 2 2 Δ s 2 − 1 Δ s 2 0 0 − 1 Δ s 2 1 Δ s 2 ] [ x ¨ 0 x ¨ 1 x ¨ 2 x ¨ 3 ] = [ x ¨ 0 − x ¨ 1 Δ s 2 , 2 x ¨ 1 − x ¨ 0 − x ¨ 2 Δ s 2 , 2 x ¨ 2 − x ¨ 1 − x ¨ 3 Δ s 2 , x ¨ 3 − x ¨ 2 Δ s 2 ] [ x ¨ 0 x ¨ 1 x ¨ 2 x ¨ 3 ] = ( x ¨ 0 − x ¨ 1 ) x ¨ 0 Δ s 2 + [ ( x ¨ 1 − x ¨ 0 ) + ( x ¨ 1 − x ¨ 2 ) ] x ¨ 1 Δ s 2 + [ ( x ¨ 2 − x ¨ 1 ) + ( x ¨ 2 − x ¨ 3 ) ] x ¨ 2 Δ s 2 + ( x ¨ 3 − x ¨ 2 ) x ¨ 3 Δ s 2 = x ¨ 0 2 − 2 x ¨ 1 x ¨ 0 + x ¨ 1 2 + x ¨ 1 2 − 2 x ¨ 1 x ¨ 2 + x ¨ 2 2 + x ¨ 2 2 − 2 x ¨ 2 x ¨ 3 + x ¨ 3 2 = ( x ¨ 0 − x ¨ 1 ) 2 + ( x ¨ 1 − x ¨ 2 ) 2 + ( x ¨ 2 − x ¨ 3 ) 2 = ∑ i = 0 n − 2 x ¨ i 2 \begin{gathered} \begin{bmatrix}\ddot{x}_0&\ddot{x}_1&\ddot{x}_2&\ddot{x}_3\end{bmatrix}\begin{bmatrix}\frac{1}{\Delta s^2}&-\frac{1}{\Delta s^2}&0&0\\-\frac{1}{\Delta s^2}&\frac{2}{\Delta s^2}&-\frac{1}{\Delta s^2}&0\\0&-\frac{1}{\Delta s^2}&\frac{2}{\Delta s^2}&-\frac{1}{\Delta s^2}\\0&0&-\frac{1}{\Delta s^2}&\frac{1}{\Delta s^2}\end{bmatrix}\begin{bmatrix}\ddot{x}_0\\\ddot{x}_1\\\ddot{x}_2\\\ddot{x}_3\end{bmatrix} \\ =\begin{bmatrix}\frac{\ddot{x}_0-\ddot{x}_1}{\Delta s^2},\frac{2\ddot{x}_1-\ddot{x}_0-\ddot{x}_2}{\Delta s^2},\frac{2\ddot{x}_2-\ddot{x}_1-\ddot{x}_3}{\Delta s^2},\frac{\ddot{x}_3-\ddot{x}_2}{\Delta s^2}\end{bmatrix}\begin{bmatrix}\ddot{x}_0\\\ddot{x}_1\\\ddot{x}_2\\\ddot{x}_3\end{bmatrix} \\ =\frac{(\ddot{x}_0-\ddot{x}_1)\ddot{x}_0}{\Delta s^2}+\frac{[(\ddot{x}_1-\ddot{x}_0)+(\ddot{x}_1-\ddot{x}_2)]\ddot{x}_1}{\Delta s^2}+\frac{[(\ddot{x}_2-\ddot{x}_1)+(\ddot{x}_2-\ddot{x}_3)]\ddot{x}_2}{\Delta s^2}+\frac{(\ddot{x}_3-\ddot{x}_2)\ddot{x}_3}{\Delta s^2} \\ =\ddot{x}_0^2-2\ddot{x}_1\ddot{x}_0+\ddot{x}_1^2+\ddot{x}_1^2-2\ddot{x}_1\ddot{x}_2+\ddot{x}_2^2+\ddot{x}_2^2-2\ddot{x}_2\ddot{x}_3+\ddot{x}_3^2 \\ =(\ddot{x}_0-\ddot{x}_1)^2+(\ddot{x}_1-\ddot{x}_2)^2+(\ddot{x}_2-\ddot{x}_3)^2 \\ =\sum_{i=0}^{n-2}\ddot{x}_i^2 \end{gathered} [x¨0x¨1x¨2x¨3] Δs21Δs2100Δs21Δs22Δs2100Δs21Δs22Δs2100Δs21Δs21 x¨0x¨1x¨2x¨3 =[Δs2x¨0x¨1,Δs22x¨1x¨0x¨2,Δs22x¨2x¨1x¨3,Δs2x¨3x¨2] x¨0x¨1x¨2x¨3 =Δs2(x¨0x¨1)x¨0+Δs2[(x¨1x¨0)+(x¨1x¨2)]x¨1+Δs2[(x¨2x¨1)+(x¨2x¨3)]x¨2+Δs2(x¨3x¨2)x¨3=x¨022x¨1x¨0+x¨12+x¨122x¨1x¨2+x¨22+x¨222x¨2x¨3+x¨32=(x¨0x¨1)2+(x¨1x¨2)2+(x¨2x¨3)2=i=0n2x¨i2

Q Matrix

The Q matrix is summation of the Q matrix of each cost function term:

Q = [ 2 w x ⋱ 2 w x 2 w x ˙ ⋱ 2 w x ˙ Q x ¨ + Q x ⋯ ] \mathbb{Q} =\begin{bmatrix}2w_{x}&&&&&&\\&\ddots&&&&&\\&&2w_{x}&&&&\\&&&2w_{\dot{x}}&&&\\&&&&\ddots&&\\&&&&&2w_{{\dot{x}}}&\\&&&&&&Q_{{\ddot{x}}}+Q_{\overset{\cdots}{x}}\end{bmatrix} Q= 2wx2wx2wx˙2wx˙Qx¨+Qx

Where

Q x ¨ + Q x ⋯ = [ 2 w x ¨ + 2 w x ⋯ Δ s 2 − 2 w x ⋯ Δ s 2 − 2 w x ⋯ Δ s 2 2 w x ¨ + 4 w x ⋯ Δ s 2 ⋱ ⋱ ⋱ − 2 w x ⋯ Δ s 2 − 2 w x ⋯ Δ s 2 2 w x ¨ + 2 w x ⋯ Δ s 2 ] Q_{\ddot{x}}+Q_{\overset{\cdots}{x}}=\begin{bmatrix}2w_{\ddot{x}}+\frac{2w_{\overset{\cdots}{x}}}{\Delta s^2}&-\frac{2w_{\overset{\cdots}{x}}}{\Delta s^2}\\-\frac{2w_{\overset{\cdots}{x}}}{\Delta s^2}&2w_{\ddot{x}}+\frac{4w_{\overset{\cdots}{x}}}{\Delta s^2}&\ddots\\&\ddots&\ddots&-\frac{2w_{\overset{\cdots}{x}}}{\Delta s^2}\\&&-\frac{2w_{\overset{\cdots}{x}}}{\Delta s^2}&2w_{\ddot{x}}+\frac{2w_{\overset{\cdots}{x}}}{\Delta s^2}\end{bmatrix} Qx¨+Qx= 2wx¨+Δs22wxΔs22wxΔs22wx2wx¨+Δs24wxΔs22wxΔs22wx2wx¨+Δs22wx

4. Constraints

We have several constraints as follows:

a. x l b [ i ] ≤ x i ≤ x u b [ i ] x_{lb}[i]\leq x_i \leq x_{ub}[i] xlb[i]xixub[i], the lateral offset x i x_i xi should be constrained between the road upper and lower boundaries.

b. x l b [ i ] ˙ ≤ x ˙ i ≤ x u b [ i ] ˙ \dot{x_{lb}[i]}\leq \dot{x}_i \leq \dot{x_{ub}[i]} xlb[i]˙x˙ixub[i]˙, the lateral velocity should be constrained between the maximum and minimum velocity constraints.

c. x l b [ i ] ¨ ≤ x ¨ i ≤ x u b [ i ] ¨ \ddot{x_{lb}[i]}\leq \ddot{x}_i \leq \ddot{x_{ub}[i]} xlb[i]¨x¨ixub[i]¨, the lateral acceleration should be constrained between the maximum and minimum acceleration constraints.

d. x l b [ i ] ⋯ ≤ x ¨ i + 1 − x ¨ i Δ s ≤ x u b [ i ] ⋯ \overset{\cdots}{x_{lb}[i]}\leq \frac{\ddot{x}_{i+1}-\ddot{x}_i}{\Delta s} \leq\overset{\cdots}{x_{ub}[i]} xlb[i]Δsx¨i+1x¨ixub[i], the lateral jerk should be constrained between the maximum and minimum jerk constraints.

e. continuity constraints, We have physical relations as follows:

l i + 1 ¨ = l i ¨ + ∫ 0 Δ s l i → i + 1 ⋯ d s = l i ¨ + l i → i + 1 ⋯ Δ s l i + 1 ˙ = l i ˙ + ∫ 0 Δ s l i → i + 1 ¨ d s = l i ˙ + l i ¨ Δ s + 1 2 l i → i + 1 ⋯ Δ s 2 l i + 1 = l i + ∫ 0 Δ s l i → i + 1 d s = l i + l ˙ i Δ s + 1 2 l ¨ i Δ s 2 + 1 6 l ⋯ i Δ s 3 \begin{gathered} \ddot{l_{i+1}}=\ddot{l_{i}}+\int_{0}^{\Delta s}\overset{\cdots}{l_{i \to i+1}}ds=\ddot{l_{i}}+\overset{\cdots}{l_{i\to i+1}}\Delta s \\ \dot{l_{i+1}}=\dot{l_{i}}+\int_{0}^{\Delta s}\ddot{l_{i\to i+1}}ds=\dot{l_{i}}+\ddot{l_{i}}\Delta s+\frac{1}{2}\overset{\cdots}{l_{i\to i+1}}\Delta s^{2} \\ l_{i+1}=l_{i}+\int_{0}^{\Delta s}l_{i\rightarrow i+1}ds=l_{i}+\dot{l}_{i}\Delta s+\frac{1}{2}\ddot{l}_{i}\Delta s^{2}+\frac{1}{6}\overset{\cdots}{l}_{i}\Delta s^{3} \end{gathered} li+1¨=li¨+0Δslii+1ds=li¨+lii+1Δsli+1˙=li˙+0Δslii+1¨ds=li˙+li¨Δs+21lii+1Δs2li+1=li+0Δslii+1ds=li+l˙iΔs+21l¨iΔs2+61liΔs3

We also have l ⋯ i = l ¨ i + 1 − l ¨ i Δ s \overset{\cdots}{l}_i=\frac{\ddot{l}_{i+1}-\ddot{l}_i}{\Delta s} li=Δsl¨i+1l¨i with

l i + 1 = l i + l ˙ i Δ s + 1 2 l ¨ i Δ s 2 + 1 6 l ⋯ i Δ s 3 = l i + l ˙ i Δ s + 1 2 l ¨ i Δ s 2 + 1 6 ( l ¨ i + 1 − l ¨ i Δ s ) Δ s 3 = l i + l ˙ i Δ s + 1 2 l ¨ i Δ s 2 + 1 6 ( l i + 1 ¨ − l ¨ i ) Δ s 2 = l i + l ˙ i Δ s + 1 2 l ¨ i Δ s 2 + 1 6 l ¨ i + 1 Δ s 2 − 1 6 l ¨ i Δ s 2 = l i + l ˙ i Δ s + 1 3 l ¨ i Δ s 2 + 1 6 l ¨ i + 1 Δ s 2 \begin{gathered} l_{i+1}=l_{i}+\dot{l}_{i}\Delta s+\frac{1}{2}\ddot{l}_{i}\Delta s^{2}+\frac{1}{6}\overset{\cdots}{l}_{i}\Delta s^{3} \\ =l_{i}+\dot{l}_{i}\Delta s+\frac{1}{2}\ddot{l}_{i}\Delta s^{2}+\frac{1}{6}(\frac{\ddot{l}_{i+1}-\ddot{l}_{i}}{\Delta s})\Delta s^{3} \\ =l_{i}+\dot{l}_{i}\Delta s+\frac{1}{2}\ddot{l}_{i}\Delta s^{2}+\frac{1}{6}(\ddot{l_{i+1}}-\ddot{l}_{i})\Delta s^{2} \\ =l_{i}+\dot{l}_{i}\Delta s+\frac{1}{2}\ddot{l}_{i}\Delta s^{2}+\frac{1}{6}\ddot{l}_{i+1}\Delta s^{2}-\frac{1}{6}\ddot{l}_{i}\Delta s^{2} \\ =l_{i}+\dot{l}_{i}\Delta s+\frac{1}{3}\ddot{l}_{i}\Delta s^{2}+\frac{1}{6}\ddot{l}_{i+1}\Delta s^{2} \end{gathered} li+1=li+l˙iΔs+21l¨iΔs2+61liΔs3=li+l˙iΔs+21l¨iΔs2+61(Δsl¨i+1l¨i)Δs3=li+l˙iΔs+21l¨iΔs2+61(li+1¨l¨i)Δs2=li+l˙iΔs+21l¨iΔs2+61l¨i+1Δs261l¨iΔs2=li+l˙iΔs+31l¨iΔs2+61l¨i+1Δs2

f. similarly,
l ˙ i + 1 = l ˙ i + 1 2 l ¨ i Δ s + 1 2 l ¨ i + 1 Δ s \dot{l}_{i+1} =\dot{l}_{i}+\frac{1}{2}\ddot{l}_{i}\Delta s+\frac{1}{2}\ddot{l}_{i+1}\Delta s l˙i+1=l˙i+21l¨iΔs+21l¨i+1Δs

Now we generate constraints in matrix form. We use b l b ≤ A x ≤ b u b b_{lb} \leq Ax \leq b_{ub} blbAxbub

constraints a

constraints a

constraints b

constraints b

constraints c

constraints c

constraints d

constraints d

constraints e

constraints e-1
constraints e-2

constraints f

constraints f

Equality constraints

We fix initial lateral offset, lateral velocity and lateral acceleration at some values.

equality constraints

Bounds

Finally, the constraints are summations of all constraints above, the lower and upper bounds are:

bounds

The A matrix form:

A matrix

Summary

Now, the standard form is generated:

arg ⁡ min ⁡ 1 2 X T H X + f T x b l b ≤ A x ≤ b u b \begin{gathered} \arg\min\frac12X^THX+f^Tx \\ b_{lb} \leq Ax \leq b_{ub} \end{gathered} argmin21XTHX+fTxblbAxbub

The H matrix is Q, and f T f^T fT is O ∈ R 3 n O\in R^{3n} OR3n.

  • 22
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值