1、sort_values功能及使用场景
功能:对数据进行排序
使用场景:合并/分组汇总/其他需要对时间等字段进行排列的场景
#示例,如下数据需要按照公司名称和时间进行排序,以便进行数据分析:
import pandas as pd
data={'company':['公司A','公司B','公司A','公司C'],
'data_month':['2020-12','2020-9','2021-3','2020-10']}
df=pd.dataframe(data)
print(df)
company data_month
0 公司A 2020-12
1 公司B 2020-9
2 公司A 2021-3
3 公司C 2020-10
2、sort_values使用方法
通俗版理解:
存放排序后新数据的新表=旧表.sort_values(‘排序字段’)
正经版理解:
DataFrame.sort_values(by=‘##’,axis=0,ascending=True, inplace=False, na_position=‘last’)
#举例
df1=df.sort_values(['company','data_month'])
print(df1)
company data_month
0 公司A 2020-12
2 公司A 2021-3
1 公司B 2020-9
3 公司C 2020-10
3、sort_values参数及其含义(不常用,但是要知道其功能)
参数 | 含义 |
axis | 若axis=0或’index’,则按照列中数据大小排序; 若axis=1或’columns’,则按照索引中数据大小排序,默认axis=0 |
ascending | 是否按指定列的数组升序排列,默认为True,升序排列 |
inplace | 是否用排序后数据替换原来数据,默认为False,不替换 |
na_position | na_position {‘first’,‘last’},设定缺失值的显示位置在首部还是尾部 |