pandas——sort_values()用法及各参数含义

本文介绍了pandas的sort_values函数,包括其在数据排序、合并和分组汇总等场景的应用。详细讲解了sort_values的使用方法,如通过指定排序字段进行排序,并解析了该函数的参数,如axis、ascending和inplace等,帮助理解其功能。
摘要由CSDN通过智能技术生成

1、sort_values功能及使用场景

功能:对数据进行排序

使用场景:合并/分组汇总/其他需要对时间等字段进行排列的场景

#示例,如下数据需要按照公司名称和时间进行排序,以便进行数据分析:

import pandas as pd
data={'company':['公司A','公司B','公司A','公司C'],
      'data_month':['2020-12','2020-9','2021-3','2020-10']}
df=pd.dataframe(data)
print(df)

    company	data_month
0	公司A	2020-12
1	公司B	2020-9
2	公司A	2021-3
3	公司C	2020-10

2、sort_values使用方法

通俗版理解:

存放排序后新数据的新表=旧表.sort_values(‘排序字段’)

正经版理解:

DataFrame.sort_values(by=‘##’,axis=0,ascending=True, inplace=False, na_position=‘last’)

#举例
df1=df.sort_values(['company','data_month'])
print(df1)

      company data_month
0     公司A    2020-12
2     公司A     2021-3
1     公司B     2020-9
3     公司C    2020-10

3、sort_values参数及其含义(不常用,但是要知道其功能)

参数含义
axis

若axis=0或’index’,则按照列中数据大小排序;

若axis=1或’columns’,则按照索引中数据大小排序,默认axis=0

ascending是否按指定列的数组升序排列,默认为True,升序排列
inplace是否用排序后数据替换原来数据,默认为False,不替换
na_positionna_position {‘first’,‘last’},设定缺失值的显示位置在首部还是尾部

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值