文章目录
大家好,我是 👉【Python当打之年(点击跳转)】
本期为大家带来 《 Pandas常用操作命令》 的 第五篇 ,主要介绍在数据处理可视化过程中经常用到的一些指令,本系列在后期会不断进行补充更新,希望对你有所帮助,如有疑问或者需要改进的地方可以私信小编。
🏳️🌈 5. 排序
示例数据:
# 重命名列
df.columns = ['姓名','性别','语文','数学','英语','城市','省份']
5.1 拆分列,生成新的Dataframe
df1 = df['姓名'].str.split('-',expand=True)
df1.columns = ['学号','姓名']
df1['性别'] = df['性别']
df1['语文'] = df['语文']
df1['数学'] = df['数学']
df1['英语'] = df['英语']
df1['城市'] = df['城市']
df1['省份'] = df['省份']
df1.dropna(inplace = True)
5.2 重置索引
df_last = df1.reset_index(drop=True)
5.3 按照语文成绩升序排序,默认升序排列
df_last.sort_values('语文')
5.4 按照数学成绩降序排序
df_last.sort_values('数学', ascending=False)
5.5 先按语文成绩升序排列,再按数学成绩降序排列
df_last.sort_values(['语文','数学'], ascending=[True,False])
5.6 语文成绩80及以上
df_last[df_last['语文']>=80]
df_last.query('语文 > 80')
5.7 语文成绩80及以上以及数学成绩90分及以上
df_last[(df_last['语文']>=80) & (df_last['数学']>=90)]
5.8 语文成绩80及以上或数学成绩90分及以上
df_last[(df_last['语文']>=80) | (df_last['数学']>=90)]
5.9 输出成绩100的行和列号
row, col = np.where(df_last.values == 100)
print('%s\t%s'%(row,col))
[0 7] [4 5]
5.10 增加一列“省份-城市”
df_last['省份-城市'] = df_last['省份'] + '-' + df_last['城市']
5.11 增加一列总分
df_last['总分'] = df_last[['语文','数学','英语']].sum(axis = 1)
5.12 按照总分、语文、数学、英语成绩依次排序
df_last.sort_values(by =['总分','语文','数学','英语'],ascending=False)
5.13 新增一列表示学生语文成绩等级的列(优秀、良好、中等、不及格)
def get_letter_grade(score):
if score>=90:
return '优秀'
elif score>=80:
return '良好'
elif score>=60:
return '中等'
else:
return '不及格'
df_last['语文等级'] = df_last['语文'].apply(lambda score: get_letter_grade(score))
未完待续。。。
文章首发:微信公众号 “Python当打之年” ,Python编程技巧推送,希望大家可以喜欢。
以上就是本期为大家整理的全部内容了,赶快练习起来吧,原创不易,喜欢的朋友可以点赞、收藏也可以分享(注明出处)让更多人知道。
推荐阅读
- 👨🎓 【Pandas+Pyecharts | 山东省高考考生数据分析可视化】
- 🚗 【Pandas+Pyecharts | 40000+汽车之家数据分析可视化】
- 🛒 【Pandas+Pyecharts | 20000+天猫订单数据可视化】
- 🏠 【Pandas+Pyecharts | 广州市已成交房源信息数据可视化】
- 🏫 【Pandas+Pyecharts | 考研信息数据可视化】
- 💸 【Pandas+Pyecharts | 某平台招聘信息数据可视化】
- 🏥 【Pandas+Pyecharts | 医院药品销售数据可视化】
- 💰️ 【Pyecharts | 比特币每日价格动态可视化】
- 🥮 【可视化 | Python中秋月饼销量分析,这些口味才是yyds!】
- 🎦 【Pyecharts | 《白蛇2:青蛇劫起》20000+数据分析可视化】
- 💑 【Pyecharts | 历年全国各地民政局登记数据分析+可视化】
- 🌏 【Pandas+Pyecharts | 全国热门旅游景点数据分析+可视化】
- 🏆 【Pandas+Pyecharts | 2020东京奥运会奖牌数据可视化】
- 🏹 【Pandas常用基础操作指令汇总 】
- 🎯 【pandas + pyecharts | ADX游戏广告投放渠道综合分析】
- 🕔 【Schedule + Pyecharts | 时间序列图(动态轮播图)】
- 🏠 【Pandas+Pyecharts | 北京某平台二手房数据分析+可视化】
- 🏫 【Pandas+Pyecharts | 2021中国大学综合排名分析+可视化】
- 🎦 【爬虫 | Python爬取豆瓣电影Top250 + 数据可视化】
- 📡 【技巧 | Python创建自己的高匿代理IP池】