机器学习算法系列(2):线性回归 | Free Will (plushunter.github.io)
回归模型建模流程:
- 初始分析:分析X、Y的分布【单变量:Y是否右偏、X和Y有无异常值】
- 变量选择:观察X和Y之间的关系,保留显著的X并放入模型【检验X、Y是否显著】
- 验证模型假设:X和Y的函数关系【看散点图】
- 多重共线性和强影响点:检验共线性和影响点的问题
回归分析,用以解释因果关系,
自变量:independent variable用来解释因变量的变量
因变量:dependent variable我们希望去解释的变量
1预判:参数估计
(26条消息) 四、假设检验之参数估计(一)_日常敲代码的博客-CSDN博客
【拓展】什么是参数估计?

本文深入探讨了线性回归模型的构建过程,包括预判阶段的参数估计,建立线性回归方程,通过最小二乘估计进行修正,以及通过方差分析进行模型检验。线性回归是用于解释因果关系的重要工具,涉及变量选择、模型假设验证、共线性问题检查等关键步骤。
最低0.47元/天 解锁文章
1492

被折叠的 条评论
为什么被折叠?



