多元函数微分学(公式,不含推导)

多元函数微分学

多元函数

n维欧氏空间

R n = {   ( x 1 , x 2 , ⋯   , x n ) ∣ x i ∈ R , i = 1 , 2 , ⋯   , n   } 且记 d = ∣ A B ∣ = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 + ⋯ + ( x n − y n ) 2 则称 R 为 n 维欧氏空间 \mathbb R^n = \set{(x_1,x_2,\cdots,x_n)|x_i\in\mathbb R,i=1,2,\cdots,n}\\ 且记d=|AB|=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+\cdots+(x_n-y_n)^2 }\\ 则称\mathbb R为n维欧氏空间 Rn={(x1,x2,,xn)xiR,i=1,2,,n}且记d=AB=(x1y1)2+(x2y2)2++(xnyn)2 则称Rn维欧氏空间

δ \delta δ邻域

圆形

U ( P 0 , δ ) = {   ( x , y ) ∈ R 2 ∣ ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ   } 去心领域: U ˚ ( P 0 , δ ) = {   ( x , y ) ∈ R 2 ∣ 0 < ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ   } U(P_0,\delta)=\set{(x,y)\in\mathbb R^2|\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta}\\ 去心领域:\mathring{U}(P_0,\delta)=\set{(x,y)\in\mathbb R^2|0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta} U(P0,δ)={(x,y)R2(xx0)2+(yy0)2 <δ}去心领域:U˚(P0,δ)={(x,y)R20<(xx0)2+(yy0)2 <δ}

方形

U ( P 0 , δ ) = {   ( x , y ) ∈ R 2 ∣ ∣ x − x 0 ∣ < δ , ∣ y − y 0 ∣ < δ   } U(P_0,\delta)=\set{(x,y)\in\mathbb R^2||x-x_0|<\delta,|y-y_0|<\delta}\\ U(P0,δ)={(x,y)R2xx0<δ,yy0<δ}

平面点集

{ 内点 : ∃ δ > 0 , U ( P 0 , δ ) ⊂ D 外点 : ∀ δ > 0 , U ( P 0 , δ ) ∩ D = ∅ 界点 : ∀ δ > 0 , U ( P 0 , δ ) 中既有属于 D 的点,也有不属于 D 的点 \begin{cases} 内点:\exist \delta>0,U(P_0,\delta)\subset D\\ 外点:\forall \delta>0,U(P_0,\delta)\cap D=\emptyset\\ 界点:\forall \delta>0,U(P_0,\delta)中既有属于D的点,也有不属于D的点 \end{cases} 内点:δ>0,U(P0,δ)D外点:δ>0,U(P0,δ)D=界点:δ>0,U(P0,δ)中既有属于D的点,也有不属于D的点

点集D的全部内点组成的集合称为D的内部,记作 i n t D intD intD
设 D ∈ R 2 { i f   D = i n t D , D 为 R 2 的开集 i f   D 的补集 D c 为开集, D 为 R 2 的闭集 i f   ∃ M > 0 , D ⊂ U ( O , M ) , O 为坐标原点, D 为有界集,否则为无界集 设D\in \mathbb{R}^2 \begin{cases} if\ D=intD,D为\mathbb{R}^2的开集\\ if\ D的补集D^c为开集,D为\mathbb{R}^2的闭集\\ if\ \exist M>0,D\subset U(O,M),O为坐标原点,D为有界集,否则为无界集 \end{cases} DR2 if D=intD,DR2的开集if D的补集Dc为开集,DR2的闭集if M>0,DU(O,M),O为坐标原点,D为有界集,否则为无界集

多元函数

定义域 值域

二元函数的极限与连续

设 z = f ( x , y ) P 0 ( x 0 , y 0 ) ∈ D , ∃ A ∈ C , ∀ ε > 0 , ∃ δ > 0 , w h e n   0 < ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ , a n d ( x , y ) ∈ D ∣ f ( x , y ) − A ∣ < ε 则记 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A 设z=f(x,y)P_0(x_0,y_0)\in D,\\\exist A\in \mathbb{C},\forall\varepsilon>0,\exist\delta>0,when\ 0<\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta,and(x,y)\in D\\ |f(x,y)-A|<\varepsilon\\ 则记\lim_{(x,y)\rightarrow(x_0,y_0)}f(x,y)=A z=f(x,y)P0(x0,y0)D,AC,ε>0,δ>0,when 0<(xx0)2+(yy0)2 <δ,and(x,y)Df(x,y)A<ε则记(x,y)(x0,y0)limf(x,y)=A

累次积分

lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) \lim_{(x,y)\rightarrow(x_0,y_0)}f(x,y) (x,y)(x0,y0)limf(x,y)

重极限

lim ⁡ x → x 0 lim ⁡ y → y 0 f ( x , y ) \lim_{x\rightarrow x_0}\lim_{y\rightarrow y_0}f(x,y) xx0limyy0limf(x,y)

若函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处存在重极限,则重极限与累次积分相等

二元函数连续性

lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) , 则 z = f ( x , y ) 在 ( x 0 , y 0 ) 处连续 \lim_{(x,y)\rightarrow (x_0,y_0)}f(x,y)=f(x_0,y_0),则z=f(x,y)在(x_0,y_0)处连续 (xy)(x0,y0)limf(x,y)=f(x0,y0),z=f(x,y)(x0,y0)处连续

全增量

Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0)

偏增量

Δ z = f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ z = f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x,y_0)-f(x_0,y_0)\\ \Delta z=f(x_0,y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0)f(x0,y0)Δz=f(x0,y0+Δy)f(x0,y0)

有界闭区域上连续函数的性质
  1. 极值可取到
  2. 零点存在

偏导数和全微分

偏导数

lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = f x ′ ( x 0 , y 0 ) = ∂ f ∂ x ∣ ( x 0 , y 0 ) \lim_{\Delta x\rightarrow 0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=f_x^\prime(x_0,y_0)=\frac{\partial f}{\partial x}\Bigg|_{(x_0,y_0)} Δx0limΔxf(x0+Δx,y0)f(x0,y0)=fx(x0,y0)=xf (x0,y0)

全微分

Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( ρ ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)=A\Delta x+B\Delta y+o(\rho) Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(ρ)

性质
  1. 全微分存在即可微
  2. z = f ( x , y ) z=f(x,y) z=f(x,y)在P处可微,则可偏导
  3. 可微则 d z = ∂ z ∂ x Δ x + ∂ z ∂ y Δ y dz=\frac{\partial z}{\partial x}\Delta x+\frac{\partial z}{\partial y}\Delta y dz=xzΔx+yzΔy
  4. 若可微,则连续
  5. 若偏导在P点连续,则可微
高阶偏导数

∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) = f x x ′ ′ ( x , y ) ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) = f x y ′ ′ ( x , y ) ∂ 2 z ∂ y ∂ x = ∂ ∂ x ( ∂ z ∂ y ) = f y x ′ ′ ( x , y ) ∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) = f y y ′ ′ ( x , y ) \frac{\partial ^2z}{\partial x^2}=\frac{\partial }{\partial x}\Big(\frac{\partial z}{\partial x}\Big)=f_{xx}^{\prime\prime}(x,y)\\ \frac{\partial ^2z}{\partial x\partial y}=\frac{\partial }{\partial y}\Big(\frac{\partial z}{\partial x}\Big)=f_{xy}^{\prime\prime}(x,y)\\ \frac{\partial ^2z}{\partial y\partial x}=\frac{\partial }{\partial x}\Big(\frac{\partial z}{\partial y}\Big)=f_{yx}^{\prime\prime}(x,y)\\ \frac{\partial ^2z}{\partial y^2}=\frac{\partial }{\partial y}\Big(\frac{\partial z}{\partial y}\Big)=f_{yy}^{\prime\prime}(x,y)\\ x22z=x(xz)=fxx′′(x,y)xy2z=y(xz)=fxy′′(x,y)yx2z=x(yz)=fyx′′(x,y)y22z=y(yz)=fyy′′(x,y)

若函数在P处有二阶连续偏导数,则 f x y ′ ′ ( x , y ) = f y x ′ ′ ( x , y ) f_{xy}^{\prime\prime}(x,y)=f_{yx}^{\prime\prime}(x,y) fxy′′(x,y)=fyx′′(x,y)

多元复合函数的偏导数

链式法则

设 u = g ( x , y ) , v = h ( x , y ) , z = f ( u , v ) u , v 在 P ( x , y ) 处偏导数存在,且 z 在对应点处有一阶连续偏导数 ∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x ∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y 设u=g(x,y),v=h(x,y),z=f(u,v)\\ u,v在P(x,y)处偏导数存在,且z在对应点处有一阶连续偏导数\\ \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x}\\ \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial y}\\ u=g(x,y),v=h(x,y),z=f(u,v)u,vP(x,y)处偏导数存在,且z在对应点处有一阶连续偏导数xz=uzxu+vzxvyz=uzyu+vzyv

一阶全微分形式不变性

d z = ( ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x ) d x + ( ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y ) d y = ∂ z ∂ u d u + ∂ z ∂ v d v dz=\Big(\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x}\Big)dx+\Big(\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial y}\Big)dy=\frac{\partial z}{\partial u}du+\frac{\partial z}{\partial v}dv dz=(uzxu+vzxv)dx+(uzyu+vzyv)dy=uzdu+vzdv

隐函数的偏导数

若函数 F ( x , y ) F(x,y) F(x,y)满足:

  1. 函数 F F F在以 P 0 ( x 0 , y 0 ) P_0(x_0,y_0) P0(x0,y0)为内点的某一区域 D ⊂ R 2 D\subset \mathbb{R}^2 DR2上连续
  2. F ( x 0 , y 0 ) = 0 F(x_0,y_0)=0 F(x0,y0)=0
  3. D D D内存在连续的偏导数 F x ′ ( x , y ) F_x^\prime(x,y) Fx(x,y) F y ′ ( x , y ) F_y^\prime(x,y) Fy(x,y)
  4. F y ′ ( x , y ) ≠ 0 F_y^\prime(x,y)\neq0 Fy(x,y)=0

则,
d y d x = − F x ′ ( x , y ) F y ′ ( x , y ) \frac{dy}{dx}=-\frac{F_x^\prime(x,y)}{F_y^\prime(x,y)} dxdy=Fy(x,y)Fx(x,y)
若函数 F ( x , y , z ) F(x,y,z) F(x,y,z)满足:

  1. 函数 F F F在以 P 0 ( x 0 , y 0 , z 0 ) P_0(x_0,y_0,z_0) P0(x0,y0,z0)为内点的某一区域 V ⊂ R 3 V\subset \mathbb{R}^3 VR3上连续
  2. F ( x 0 , y 0 , z 0 ) = 0 F(x_0,y_0,z_0)=0 F(x0,y0,z0)=0
  3. D D D内存在连续的偏导数 F x ′ ( x , y , z ) F_x^\prime(x,y,z) Fx(x,y,z) F y ′ ( x , y , z ) F_y^\prime(x,y,z) Fy(x,y,z), F z ′ ( x , y , z ) F_z^\prime(x,y,z) Fz(x,y,z)
  4. F z ′ ( x , y , z ) ≠ 0 F_z^\prime(x,y,z)\neq0 Fz(x,y,z)=0


d z d x = − F x ′ ( x , y , z ) F z ′ ( x , y , z ) d z d y = − F y ′ ( x , y , z ) F z ′ ( x , y , z ) \frac{dz}{dx}=-\frac{F_x^\prime(x,y,z)}{F_z^\prime(x,y,z)}\\ \frac{dz}{dy}=-\frac{F_y^\prime(x,y,z)}{F_z^\prime(x,y,z)} dxdz=Fz(x,y,z)Fx(x,y,z)dydz=Fz(x,y,z)Fy(x,y,z)

多元函数的极值

二元函数的极值

条件:
{ f x ′ ( x 0 , y 0 ) = 0 f y ′ ( x 0 , y 0 ) = 0 \begin{cases} f_x^\prime(x_0,y_0)=0\\ f_y^\prime(x_0,y_0)=0\\ \end{cases} {fx(x0,y0)=0fy(x0,y0)=0

此时,计 A = f x x ′ ′ ( x 0 , y 0 ) , B = f x y ′ ′ ( x 0 , y 0 ) , C = f y y ′ ′ ( x 0 , y 0 ) { B 2 − A C < 0 { A > 0 , 极小值 A < 0 , 极大值 B 2 − A C = 0 ,不是极值点 B 2 − A C > 0 , 不一定 此时,计A=f_{xx}^{\prime\prime}(x_0,y_0),B=f_{xy}^{\prime\prime}(x_0,y_0),C=f_{yy}^{\prime\prime}(x_0,y_0)\\ \begin{cases} B^2-AC<0 \begin{cases} A>0,极小值\\ A<0,极大值\\ \end{cases}\\ B^2-AC=0,不是极值点\\ B^2-AC>0,不一定 \end{cases} 此时,计A=fxx′′(x0,y0),B=fxy′′(x0,y0),C=fyy′′(x0,y0) B2AC<0{A>0,极小值A<0,极大值B2AC=0,不是极值点B2AC>0,不一定

多元函数的条件极值

指在 g ( x , y ) = 0 g(x,y)=0 g(x,y)=0 f ( x 0 , y 0 ) f(x_0,y_0) f(x0,y0)为极值
{ f x ′ ( x 0 , y 0 ) + λ g x ′ ( x 0 , y 0 ) = 0 f y ′ ( x 0 , y 0 ) + λ g y ′ ( x 0 , y 0 ) = 0 g x ( x 0 , y 0 ) = 0 \begin{cases} f_x^\prime(x_0,y_0)+\lambda g_x^\prime(x_0,y_0)=0\\ f_y^\prime(x_0,y_0)+\lambda g_y^\prime(x_0,y_0)=0\\ g_x(x_0,y_0)=0 \end{cases} fx(x0,y0)+λgx(x0,y0)=0fy(x0,y0)+λgy(x0,y0)=0gx(x0,y0)=0
引进
L ( x , y , λ ) = f ( x , y ) + λ g ( x , y ) L(x,y,\lambda)=f(x,y)+\lambda g(x,y) L(x,y,λ)=f(x,y)+λg(x,y)
则对所有参数偏导均为0

泰勒展开

φ ( k ) ( 0 ) = ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) k f ( x 0 , y 0 ) \varphi^{(k)}(0)=\Big(\Delta x\frac{\partial}{\partial x}+\Delta y\frac{\partial}{\partial y}\Big)^kf(x_0,y_0) φ(k)(0)=(Δxx+Δyy)kf(x0,y0)

所以,佩亚诺余项泰勒展开
f ( x , y ) = f ( x 0 , y 0 ) + ∑ k = 1 n 1 k ! ( Δ x ∂ ∂ x + Δ y ∂ ∂ y ) k f ( x 0 , y 0 ) + o ( ρ n ) f(x,y)=f(x_0,y_0)+\sum_{k=1}^{n}\frac{1}{k!}\Big(\Delta x\frac{\partial}{\partial x}+\Delta y\frac{\partial}{\partial y}\Big)^kf(x_0,y_0)+o(\rho^n) f(x,y)=f(x0,y0)+k=1nk!1(Δxx+Δyy)kf(x0,y0)+o(ρn)

方向导数和梯度

方向导数

lim ⁡ ρ → 0 + f ( M + ρ l ⃗ ) − f ( M ) ρ = ∂ f ∂ l ⃗ ∣ M ∂ f ∂ l ⃗ = f x ′ ( M 0 ) cos ⁡ α + f y ′ ( M 0 ) cos ⁡ β + f z ′ ( M 0 ) cos ⁡ γ \lim_{\rho\rightarrow0^+}\frac{f(M+\rho\vec{l})-f(M)}{\rho}=\frac{\partial f}{\partial \vec{l}}\Bigg|_M\\ \frac{\partial f}{\partial \vec{l}}=f^\prime_x(M_0)\cos\alpha+f^\prime_y(M_0)\cos\beta+f^\prime_z(M_0)\cos\gamma ρ0+limρf(M+ρl )f(M)=l f Ml f=fx(M0)cosα+fy(M0)cosβ+fz(M0)cosγ

梯度

g r a d   f = ( f x ′ ( M ) , f y ′ ( M ) , f z ′ ( M ) ) ∂ f ∂ l ⃗ = ∣ g r a d   f ∣ cos ⁡ θ = g r a d   f ⋅ l ⃗ 0 grad\ f=(f^\prime_x(M),f^\prime_y(M),f^\prime_z(M))\\ \frac{\partial f}{\partial \vec{l}}=|grad\ f|\cos\theta=grad\ f\cdot\vec{l}^0 grad f=(fx(M),fy(M),fz(M))l f=grad fcosθ=grad fl 0

切平面与法线

F ( x , y , z ) = 0 C : { x = x ( t ) y = y ( t ) z = z ( t ) F(x,y,z)=0\\ C:\begin{cases} x=x(t)\\ y=y(t)\\ z=z(t) \end{cases} F(x,y,z)=0C: x=x(t)y=y(t)z=z(t)

则切向量 s ⃗ = ( x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) \vec{s}=(x^\prime(t_0),y^\prime(t_0),z^\prime(t_0) s =(x(t0),y(t0),z(t0),法向量 n ⃗ = ( F x ′ ( M 0 ) , F y ′ ( M 0 ) , F z ′ ( M 0 ) ) \vec{n}=(F_x^\prime(M_0),F_y^\prime(M_0),F_z^\prime(M_0)) n =(Fx(M0),Fy(M0),Fz(M0))

法线方程
x − x 0 F x ′ ( M 0 ) = y − y 0 F y ′ ( M 0 ) = z − z 0 F z ′ ( M 0 ) \frac{x-x_0}{F_x^\prime(M_0)}=\frac{y-y_0}{F_y^\prime(M_0)}=\frac{z-z_0}{F_z^\prime(M_0)} Fx(M0)xx0=Fy(M0)yy0=Fz(M0)zz0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值