07 多元函数微分

多元函数微分学

第一节 多元函数的基本概念

一、多元函数的极限

lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim_{(x,y) \to (x_0, y_0)}f(x,y) = A lim(x,y)(x0,y0)f(x,y)=A

【注】

( x , y ) → ( x 0 , y 0 ) (x,y) \to(x_0,y_0) (x,y)(x0,y0)是以“任意方式”。

②一元函数极限中的下述性质对多元函数仍成立

局部有界性;保号性;有理运算;极限与无穷小的关系;夹逼性

1.1 求简单重极限

iShot2020-11-09下午04.08.02

Answer


iShot2020-11-30上午08.16.51

Answer



【注】

  1. 求多元极限的常见方法:

    ①四则运算法则、取绝对值用夹逼准则。 f ( x ) → 0 ⇔ ∣ f ( x ) ∣ → 0 f(x) \to 0 \Leftrightarrow |f(x)| \to 0 f(x)0f(x)0

    ②消去分母中极限为零的因子(有理化,等价无穷小代换)

    ③利用无穷小量与有界变量之积为无穷小量

  2. 求多元极限的初步判定(一般情况):

    ①上下同次,不存在

    ②上比下的次数高,0

    ③上比下的次数低, ∞ \infty

1.2 判断重极限不存在

iShot2020-11-09下午04.09.21

Answer


iShot2020-11-30上午08.20.19

Answer


【注】

  1. 说明简单重极限不存在的基本方法:通常选过这点的不同路径,然后去看如果不同路径

的值都不一样,立马就断定这个极限不存在。

  1. 初步判定:上下同次,一般不存在。

二、多元函数的连续性

  1. 连续的概念

    lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim_{(x,y) \to (x_0, y_0)}f(x,y) = f(x_0,y_0) lim(x,y)(x0,y0)f(x,y)=f(x0,y0)

  2. 连续函数的性质

    性质1 多元连续函数的和、差、积、商(分母不为零)仍为连续函数。

    性质2 多元连续函数的复合函数也是连续函数。

    性质3 多元初等函数在其定义区域内连续

    性质4(最大值定理)

    有界闭区域D上的连续函数在区域D上必能取得最大值与最小值

    性质5(介值定理)

    有界闭区域D上的连续函数在区域D上必能取得介于最大值与最小值之间的任何值

    性质6(有界性)

    f ( x , y ) f(x,y) f(x,y)在有界闭区域D上连续,则 f ( x , y ) f(x,y) f(x,y)在D上有界

【掌握】会用定义来判定一个函数在一点上的连续性。

iShot2020-11-30上午08.36.03

Answer


三、偏导数

  1. 偏导数的定义

f x ′ ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = d d x f ( x , y 0 ) ∣ x = x 0 f'_x(x_0,y_0) = \lim_{\Delta x \to 0}{f(x_0+ \Delta x, y_0)-f(x_0,y_0) \over \Delta x} = {d \over dx}f(x,y_0)|_{x =x_0} fx(x0,y0)=limΔx0Δxf(x0+Δx,y0)f(x0,y0)=dxdf(x,y0)x=x0

f y ′ ( x 0 , y 0 ) = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y = d d y f ( x 0 , y ) ∣ y = y 0 f'_y(x_0,y_0) = \lim_{ \Delta y \to 0}{f(x_0, y_0 + \Delta y) - f(x_0, y_0) \over \Delta y} = {d \over dy}f(x_0, y)|_{y = y_0} fy(x0,y0)=limΔy0Δyf(x0,y0+Δy)f(x0,y0)=dydf(x0,y)y=y0

【注】偏导数本质上就是一元函数的导数,其中 f x ′ ( x 0 , y 0 ) f'_x(x_0,y_0) fx(x0,y0)就是一元函数 f ( x , y 0 ) f(x,y_0) f(x,y0)

x = x 0 x=x_0 x=x0处的导数, f y ′ ( x 0 , y 0 ) f'_y(x_0,y_0) fy(x0,y0)就是一元函数 f ( x 0 , y ) f(x_0,y) f(x0,y) y = y 0 y = y_0 y=y0处的导数。

iShot2020-11-30上午08.40.36

Answer


【注1】方法:先代后求

【注2】先代后求只能算一个具体点,不能证明整个偏导函数的相关问题。

例如


  1. 二元函数偏导数的几何意义

    iShot2020-11-09下午04.51.12

  2. 高阶偏导数

    对x的二阶偏导: f x x ′ ′ ( x , y ) = ∂ 2 z ∂ x 2 = ∂ ∂ x ( ∂ z ∂ x ) f''_{xx} (x,y)= {\partial ^2z \over \partial x^2} = {\partial \over \partial x}({ \partial z \over \partial x}) fxx(x,y)=x22z=x(xz)

    先对x后对y的偏导数: f x y ′ ′ = ∂ 2 z ∂ x ∂ y = ∂ ∂ y ( ∂ z ∂ x ) f''_{xy} = { \partial^2z \over \partial x \partial y} = {\partial \over \partial y}({ \partial z \over \partial x}) fxy=xy2z=y(xz)

    先对y后对x的偏导数: f y x ′ ′ = ∂ 2 z ∂ y ∂ x = ∂ ∂ x ( ∂ z ∂ y ) f''_{yx} = { \partial^2 z \over \partial y \partial x} = { \partial \over \partial x}({\partial z \over \partial y}) fyx=yx2z=x(yz)

    对y的二阶偏导数: f y y ′ ′ ( x , y ) = ∂ 2 z ∂ y 2 = ∂ ∂ y ( ∂ z ∂ y ) f''_{yy}(x,y) = {\partial^2 z \over \partial y^2} = {\partial \over \partial y }({\partial z \over \partial y}) fyy(x,y)=y22z=y(yz)

定理 如果函数 z = f ( x , y ) z = f(x,y) z=f(x,y)的两个二阶混合偏导数 ∂ 2 z ∂ x ∂ y {\partial ^2 z \over \partial x \partial y} xy2z ∂ 2 z ∂ y ∂ x {\partial^2 z \over \partial y \partial x} yx2z在区域D内连续,则在该

区域内这两个混合偏导数必定相等,即
∂ 2 z ∂ x ∂ y = ∂ 2 z ∂ y ∂ x {\partial ^2 z \over \partial x \partial y}={\partial^2 z \over \partial y \partial x} xy2z=yx2z
【注】偏导数存在不一定保证f在那个点连续

四、全微分

4.1 定义

定义(全微分) Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( ρ ) \Delta z = f(x_0+\Delta x, y_0+ \Delta y )-f(x_0, y_0) = A \Delta x + B \Delta y + o( \rho) Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(ρ)

则称函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)处可微, d z = A Δ x + B Δ y = A d x + B d y dz = A \Delta x + B \Delta y = Adx+Bdy dz=AΔx+BΔy=Adx+Bdy

其中:$\rho 为 动 点 到 定 点 之 间 的 距 离 , 为动点到定点之间的距离, \rho = \sqrt{(\Delta x)^2+(\Delta y)^2}$

【注】可微定义的四种等价形式

iShot2020-11-30上午09.09.02

4.2 必要条件

定理(全微分存在的必要条件) 如果函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微,则该函数在点

( x , y ) (x,y) (x,y)处的偏导数 ∂ z ∂ x , ∂ z ∂ y {\partial z \over \partial x}, {\partial z \over \partial y} xz,yz必定存在,且
d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz = {\partial z \over \partial x}dx + {\partial z \over \partial y}dy dz=xzdx+yzdy
即, f x ( x 0 , y 0 ) f_x(x_0, y_0) fx(x0,y0) f y ( x 0 , y 0 ) f_y(x_0,y_0) fy(x0,y0)都存在。

4.3 充分条件

定理(全微分存在的充分条件) 如果 z = f ( x , y ) z = f(x,y) z=f(x,y)的偏导数 ∂ z ∂ x , ∂ z ∂ y {\partial z \over \partial x}, {\partial z \over \partial y} xz,yz在点 ( x , y ) (x,y) (x,y)处连

续,则函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微。即 f x ( x , y ) f_x(x, y) fx(x,y) f y ( x , y ) f_y(x,y) fy(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)连续。

4.4 判定

用定义判断可微性

a) f x ( x 0 , y 0 ) f_x(x_0, y_0) fx(x0,y0) f y ( x 0 , y 0 ) f_y(x_0,y_0) fy(x0,y0)是否都存在?

b) lim ⁡ ( Δ x , Δ y ) → ( 0 , 0 ) Δ z − [ f x ( x 0 , y 0 ) Δ x + f y ( x 0 , y 0 ) Δ y ] ( Δ x ) 2 + ( Δ y ) 2 \lim_{(\Delta x , \Delta y) \to (0,0)} { \Delta z - [f_x(x_0,y_0)\Delta x + f_y(x_0,y_0)\Delta y] \over \sqrt{(\Delta x)^2+(\Delta y)^2}} lim(Δx,Δy)(0,0)(Δx)2+(Δy)2 Δz[fx(x0,y0)Δx+fy(x0,y0)Δy]是否为零?

Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) = A Δ x + B Δ y + o ( ρ ) \Delta z = f(x_0+\Delta x, y_0+ \Delta y )-f(x_0, y_0) = A \Delta x + B \Delta y + o( \rho) Δz=f(x0+Δx,y0+Δy)f(x0,y0)=AΔx+BΔy+o(ρ)

4.5 连续、可偏导及可微之间的关系

iShot2020-11-09下午08.33.12

【注1】

为什么多元函数可偏导推不出可微,也推不出来连续?

f x ′ ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = d d x f ( x , y 0 ) ∣ x = x 0 f'_x(x_0,y_0) = \lim_{\Delta x \to 0}{f(x_0+ \Delta x, y_0)-f(x_0,y_0) \over \Delta x} = {d \over dx}f(x,y_0)|_{x =x_0} fx(x0,y0)=limΔx0Δxf(x0+Δx,y0)f(x0,y0)=dxdf(x,y0)x=x0

f y ′ ( x 0 , y 0 ) = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y = d d y f ( x 0 , y ) ∣ y = y 0 f'_y(x_0,y_0) = \lim_{ \Delta y \to 0}{f(x_0, y_0 + \Delta y) - f(x_0, y_0) \over \Delta y} = {d \over dy}f(x_0, y)|_{y = y_0} fy(x0,y0)=limΔy0Δyf(x0,y0+Δy)f(x0,y0)=dydf(x0,y)y=y0

f x ′ ( x 0 , y 0 ) f'_x(x_0,y_0) fx(x0,y0)只与 y = y 0 y = y_0 y=y0这条直线上的函数值有关

f y ′ ( x 0 , y 0 ) f'_y(x_0,y_0) fy(x0,y0)只与 x = x 0 x = x_0 x=x0这条直线上的函数值有关

其他的点他们管不了,但是连续和可微,不是由这两条线上的函数值决定的。

第二节 多元函数微分法

一、复合函数的微分法

定理 u = u ( x , y ) , v = v ( x , y ) u = u(x,y), v = v(x,y) u=u(x,y),v=v(x,y)在点 ( x , y ) (x,y) (x,y)处有对x及对y的偏导数,函数 z = f ( u , v ) z = f(u,v) z=f(u,v)在对

应点 ( u , v ) (u,v) (u,v)处有连续偏导数,则 z = f [ u ( x , y ) , v ( x , y ) ] z = f[u(x,y), v(x,y)] z=f[u(x,y),v(x,y)]在点 ( x , y ) (x,y) (x,y)处的两个偏导数存在,且


∂ z ∂ x = ∂ z ∂ u ∂ u ∂ x + ∂ z ∂ v ∂ v ∂ x , ∂ z ∂ y = ∂ z ∂ u ∂ u ∂ y + ∂ z ∂ v ∂ v ∂ y {\partial z \over \partial x} = {\partial z \over \partial u}{ \partial u \over \partial x}+{\partial z \over \partial v}{\partial v \over \partial x}, \quad {\partial z \over \partial y} = {\partial z \over \partial u}{ \partial u \over \partial y}+{\partial z \over \partial v}{\partial v \over \partial y} xz=uzxu+vzxv,yz=uzyu+vzyv

全微分形式的不变性

设函数 z = f ( u , v ) , v = ( x , y ) z = f(u,v), v = (x, y) z=f(u,v),v=(x,y) v = v ( x , y ) v = v(x,y) v=v(x,y)都有连续的一阶偏导数,则复合函数

z = f [ u ( x , y ) , v ( x , y ) ] z = f[u(x,y), v(x,y)] z=f[u(x,y),v(x,y)]的全微分
d z = ∂ z ∂ x d x + ∂ z ∂ y d y d z = ∂ z ∂ u d u + ∂ z ∂ v d v dz = {\partial z \over \partial x}dx + {\partial z \over \partial y}dy \\dz= {\partial z \over \partial u}du + {\partial z \over \partial v }dv dz=xzdx+yzdydz=uzdu+vzdv
即:不论把函数z看作自变量x,y的函数,还是看作中间变量u,v的函数,函数z的全微分

形式都是一样的。

iShot2020-11-10上午08.50.40

【注1】多元内外层都可导,推不出来复合可导。是内层可导,外层有连续可导数,才能推

出复合可导。

【注2】对多元复合函数求导:①画变量之间树形图;②对某个变量求导,几项相加看尾巴

上几个x,就几项相加,每一项有几个因子相乘,从z到自变量几个连线就一个因子相乘。

二、隐函数微分法

(1)由方程 F ( x , y ) = 0 F(x,y)=0 F(x,y)=0确定的隐函数 y = ( x ) y = (x) y=(x)

若函数 F ( x , y ) F(x,y) F(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)的某一领域内有连续偏导数,且 F ( x 0 , y 0 ) = 0 F(x_0,y_0) = 0 F(x0,y0)=0

F x ′ ( x 0 , y 0 ) ≠ 0 F'_x(x_0,y_0) \neq 0 Fx(x0,y0)=0,且方程 F ( x , y ) = 0 F(x,y)= 0 F(x,y)=0在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某领域内可唯一确定一个有连续导数的

函数 y = f ( x ) y = f(x) y=f(x),并有
y ′ = − F x ′ F y ′ y' = - {F'_x \over F'_y} y=FyFx
(2)由方程 F ( x , y , z ) = 0 F(x,y,z) = 0 F(x,y,z)=0确定的隐函数 z = z ( x , y ) z = z(x,y) z=z(x,y)

若函数 F ( x , y , z ) F(x, y ,z) F(x,y,z)在点 P ( x 0 , y 0 , z 0 ) P(x_0, y_0, z_0) P(x0,y0,z0)的某一领域内有连续偏导数,且 F ( x 0 , y 0 , z 0 ) = 0 F(x_0,y_0,z_0)= 0 F(x0,y0,z0)=0

$F’_z(x_0, y_0,z_0)\neq 0 , 则 方 程 ,则方程 F(x,y,z) = 0 在 点 在点 (x_0, y_0, z_0)$的某领域可唯一确定一个有连续

偏导数的函数 z = f ( x , y ) z = f(x,y) z=f(x,y),并有
∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ {\partial z \over \partial x } = - {F'_x \over F'_z}, \quad {\partial z \over \partial y } = - {F'_y \over F'_z} xz=FzFx,yz=FzFy

【注】由$F’_z(x_0, y_0,z_0)\neq 0 $,可以确定z是x,y的函数。

x,y,z三个变量,谁是另外两个变量的函数?

F对x,y,z的某个偏导不为零,如果题目已知 F y ′ ≠ 0 F'_y \neq 0 Fy=0,则 y = y ( x , z ) y = y(x,z) y=y(x,z)

【注2】

iShot2020-12-01上午11.01.08

【注3】

公式法:
∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ {\partial z \over \partial x } = - {F'_x \over F'_z}, \quad {\partial z \over \partial y } = - {F'_y \over F'_z} xz=FzFx,yz=FzFy

例, z + e z = x y z+e^z=xy z+ez=xy

将所有变量移到一边,变为 F ( x , y , z ) = 0 F(x,y,z) = 0 F(x,y,z)=0的形式。 z + e z − x y = 0 z+e^z-xy=0 z+ezxy=0

F x ′ F'_x Fx时,把y、z看作常数。 F x ′ = − y F_x^{'} = -y Fx=y

F z ′ F_z^{'} Fz时,把x、y看作常数。 F z ′ = 1 + e z F_z^{'} = 1+e^z Fz=1+ez

∂ z ∂ x = − F x ′ F z ′ = y 1 + e z {\partial z \over \partial x } = - {F'_x \over F'_z}={ y \over 1+e^z} xz=FzFx=1+ezy

两边求导: 要把z看作x、y的函数。 ∂ z ∂ x + e z ∂ z ∂ x = y {\partial z \over \partial x } + e^z {\partial z \over \partial x }=y xz+ezxz=y

微分形式不变性:

d z + e z d z = x d y + y d x dz +e^zdz = xdy + y dx dz+ezdz=xdy+ydx

( 1 + e z ) d z = x d y + y d x (1+e^z)dz = xdy + ydx (1+ez)dz=xdy+ydx

d z = x 1 + e z d y + y 1 + e z d x dz = {x \over 1+e^z}dy + { y \over 1+e^z}dx dz=1+ezxdy+1+ezydx

第三节 多元函数的极值和最值

一、无条件极值

定义 设函数 z = f ( x , y ) z = f(x,y) z=f(x,y)在点 P ( x 0 , y 0 ) P(x_0,y_0) P(x0,y0)的某领域内有定义,若对该领域内任意的点

P ( x , y ) P(x,y) P(x,y)均有
f ( x , y ) ≤ f ( x 0 , y 0 ) ( o r f ( x , y ) ≥ f ( x 0 , y 0 ) ) f(x,y) \leq f(x_0, y_0)(or f(x,y) \geq f(x_0, y_0)) f(x,y)f(x0,y0)(orf(x,y)f(x0,y0))

则称 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) f ( x , y ) f(x,y) f(x,y)的极大值点(或极小值点);称 f ( x 0 , y 0 ) f(x_0, y_0) f(x0,y0) f ( x , y ) f(x,y) f(x,y)的极大值(或极小值),极大值点和极小值点统称为极值点,极大值和极小值统称为极值

定理(极值的必要条件) z = f ( x , y ) z = f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)存在偏导数,且 ( x 0 , y 0 ) (x_0, y_0) (x0,y0) f ( x , y ) f(x,y) f(x,y)

极值点,则
f x ′ ( x 0 , y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0, y_0) = 0 , \quad f'_y(x_0, y_0) = 0 fx(x0,y0)=0,fy(x0,y0)=0

【注】

驻点:导数为零的点。

极值点不一定是驻点。 z = ∣ x ∣ + ∣ y ∣ z = |x|+|y| z=x+y

驻点不一定是极值点。 z = x y z = xy z=xy

定理(极值的充分条件)

z = f ( x , y ) z = f(x,y) z=f(x,y)在点 P 0 ( x 0 , y 0 ) P_0(x_0, y_0) P0(x0,y0)的某领域内有二阶连续偏导数,又

f x ′ ( x 0 , y 0 ) , f y ′ ( x 0 , y 0 ) = 0 f'_x (x_0, y_0) , f'_y(x_0, y_0) = 0 fx(x0,y0),fy(x0,y0)=0

A = f x x ′ ′ ( x 0 , y 0 ) , B = f x y ′ ′ ( x 0 , y 0 ) , C = f y y ′ ′ ( x 0 , y 0 ) A = f''_{xx}(x_0, y_0), \quad B = f''_{xy}(x_0, y_0), \quad C = f''_{yy}(x_0, y_0) A=fxx(x0,y0),B=fxy(x0,y0),C=fyy(x0,y0),则

①当$AC - B^2 > 0 时 , 有 极 值 时,有极值 \begin{cases}A> 0 , &极小值 \ A< 0 , & 极大值 \end{cases}$

②当 A C − B 2 < 0 AC- B^2 < 0 ACB2<0时,无极值。(在内部无极值)

③当 A C − B 2 = 0 AC- B^2 = 0 ACB2=0时,不一定(一般用定义判定)。

【注】

二元函数 z = f ( x , y ) z = f(x,y) z=f(x,y)可能取得极值的点就两种,驻点和偏导数不存在的点。

二、条件极值和拉格朗日乘数法

z = f ( x , y ) z = f(x,y) z=f(x,y)在条件 φ ( x , y ) = 0 \varphi (x,y) = 0 φ(x,y)=0下的条件极值的一般方法为:

①构造拉格朗日函数 F ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) F(x,y, \lambda) = f(x,y) + \lambda \varphi (x,y) F(x,y,λ)=f(x,y)+λφ(x,y)

②将 F ( x , y , λ ) F(x,y, \lambda) F(x,y,λ)分别对x,y, λ \lambda λ求偏导数,构造方程组

{ F x = f x ′ ( x , y ) + λ φ x ′ ( x , y ) = 0 F y = f y ′ ( x , y ) + λ φ y ′ ( x , y ) = 0 F λ = φ ( x , y ) = 0 \begin{cases} F_x = f'_x(x,y)+ \lambda \varphi'_x (x,y) = 0 \\[1ex] F_y = f'_y(x,y)+ \lambda \varphi'_y (x,y) = 0\\[1ex] F_{\lambda} = \varphi(x,y) = 0 \end{cases} Fx=fx(x,y)+λφx(x,y)=0Fy=fy(x,y)+λφy(x,y)=0Fλ=φ(x,y)=0

解出x,y及 λ \lambda λ,则其中 ( x , y ) (x,y) (x,y)就是函数 f ( x , y ) f(x,y) f(x,y)在条件 φ ( x , y ) = 0 \varphi(x,y) = 0 φ(x,y)=0下的可能极值点。

函数 f ( x , y , z ) f(x,y,z) f(x,y,z)在条件 φ ( x , y , z ) = 0 , ψ ( x , y , z ) = 0 \varphi(x,y,z) = 0, \psi(x,y,z) = 0 φ(x,y,z)=0,ψ(x,y,z)=0条件下的条件极值。

F ( x , y , z , λ , μ ) = f ( x , y , z ) + λ φ ( x , y , z ) + μ ψ ( x , y , z ) F(x,y,z, \lambda, \mu) = f(x,y,z) + \lambda \varphi(x,y,z)+ \mu \psi(x,y,z) F(x,y,z,λ,μ)=f(x,y,z)+λφ(x,y,z)+μψ(x,y,z)

三、最大值最小值

  1. 求连续函数 f ( x , y ) f(x,y) f(x,y)在有界闭区域D上的最大值最小值

    ①求 f ( x , y ) f(x,y) f(x,y)在D内部可能的极值点

    ②求 f ( x , y ) f(x,y) f(x,y)在D的边界上的最大值最小值

    ③比较

  2. 应用题

【注】是在内部可能取到的极值点。

注意点

  1. 多元内外层都可导,推不出来复合可导。是内层可导,外层有连续可导数,才能推出复

    合可导。

  2. 和差的微分=微分的和差

  3. d z = A d x + B d y dz = Adx+Bdy dz=Adx+Bdy

  4. 偏导连续就是一阶偏导是连续函数。

  5. 当混合偏导连续时,混合偏导相等。

  6. 常函数一定可微。

技巧

  1. 多元微分中的bug级技巧

问题

  1. 如何形象直观的理解全微分?

  2. 咸鱼的微积分笔记——隐函数

方法

  1. 隐函数求导

    ①两边求偏导

    ②代公式(其余变量看作常数)

    ③两边求微分

  2. 复合和隐函数综合在一起微分问题常用的方法

    ①变量之间关系理清楚,然后用复合函数求导和隐函数求导直接求

    ②可以不去理那个变量,用微分形式不变性,给几个式子几个式子求微分,求完以后要什么留什么,不要什么就把什么东西消掉。(微分形式不变性的优势:可以不去理变量之间的关系。当你拿到一道题当复合函数和隐函数综合在一起,特别是变量之间的关系理不清楚的时候,这种方法的优越性就体现的更加明显)

  3. 已知全微分求原函数的方法

    ①凑微分

    ②偏积分

  4. 求条件最值的方法

    ①拉格朗如乘数法

    ②化条件为无条件 { y = y ( x ) 参 数 方 程 \begin{cases}y = y(x) \\ 参数方程 \end{cases} {y=y(x)

  5. 求一点处的偏导数和全微分

    ①分段函数在分界点,用定义。

    ②先代后求

    【注1】算具体点上的二阶偏导,也可以先代后求

    【注2】算三元函数的全微分,也可以先代后求

  6. 具体函数偏导数和全微分

    ①幂指函数:1)改写成e; 2)两边取对数; 3)换元 → \to 复合函数求导 → \to 链导法

    【注】法3)也可以用在一元函数求导中

  7. d z = P ( x , y ) d x + Q ( x , y ) d y dz = P(x,y)dx + Q(x,y)dy dz=P(x,y)dx+Q(x,y)dy

    dx前面对y求偏导=dy前面对x求偏导

    iShot2020-12-01下午02.39.16

具体方法

1. 偏积分

iShot2020-12-01上午11.31.13

Answer


【注】

①对一个偏积分,另一个看作常数。

②第一次偏积分要加 φ ( x ) \varphi(x) φ(x),第二次要加 ψ ( x ) \psi(x) ψ(x)

③每做完一个偏积分,就要想办法把相应的x或y的函数定出来。

iShot2020-12-01上午11.39.32

Answer



2. 知道全微分求函数本身

2.1 偏积分

iShot2020-12-01下午02.51.50
在这里插入图片描述

【注】对x偏积分加y的任意函数,对y偏积分加x的任意函数。

2.2 凑微分

方法: d u ( x , y ) = A d x + B d y = d ( ) ⇒ u = ( ) + C du(x,y) = Adx + Bdy = d() \Rightarrow u = ()+C du(x,y)=Adx+Bdy=d()u=()+C

d u ( x , y ) = y d x + [ ( x − 1 ) + y 2 ] d y = y d x + ( x − 1 ) d y + d ( 1 3 y 3 ) du(x,y) = ydx + [(x-1)+y^2]dy =ydx+(x-1)dy+ d({1\over 3}y^3) du(x,y)=ydx+[(x1)+y2]dy=ydx+(x1)dy+d(31y3)

= y d ( x − 1 ) + ( x − 1 ) d y + d ( 1 3 y 3 ) =yd(x-1)+(x-1)dy +d({1\over 3}y^3) =yd(x1)+(x1)dy+d(31y3)

= d ( x − 1 ) y + d ( 1 3 y 3 ) =d(x-1)y +d({1\over 3}y^3) =d(x1)y+d(31y3)

u = ( x − 1 ) y + 1 3 y 3 + C u = (x-1)y+{1\over 3}y^3+C u=(x1)y+31y3+C

【注】如果不好凑,那就分组凑。

  • 12
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值