CINTA第一周选做题

第一章

题6

题目:利用定理1.1(除法算法)证明,任意整数的平方都形如 3k 或者 3k+1,k 是整数。
证明思路:
由除法算法知: ∀ a ∈ Z , ∃ k , r ∈ Z 且 0 ≤ r < 3 , 使 a = 3 k + r \forall a \in \mathbb{Z},\exists k,r\in \mathbb{Z}且0\leq r<3,使a=3k+r aZ,k,rZ0r<3,使a=3k+r
则: a 2 = ( 3 k + r ) 2 = 9 k 2 + 6 k r + r 2 a^{2}=(3k+r)^{2}=9k^{2}+6kr+r^{2} a2=(3k+r)2=9k2+6kr+r2
注意到: 3 ∣ ( 9 k 2 + 6 k r ) , 3|(9k^{2}+6kr), 3∣(9k2+6kr)即: a 2 ≡ r 2 ( m o d 3 ) a^{2}\equiv r^{2}\pmod 3 a2r2(mod3)
r ∈ { 0 , 1 , 2 } r\in \left \{0,1,2 \right \} r{0,1,2},则: a 2 ≡ r 2 ≡ 0 或 1 ( m o d 3 ) a^{2}\equiv r^{2}\equiv 0或1\pmod3 a2r201(mod3)
从而: a 2 a^{2} a2都形如 3 k 3k 3k或者 3 k + 1 3k+1 3k+1

题7

题目:用 C 语言编程实现一个函数,判断输入的正整数是否为平方数,即输入整数 n,判断 n 是否等于某个整数的平方。

int judge(int n)
{
	return sqrt(n) == (int)sqrt(n);
}

题8

题目:证明任意形如 111 ⋯ 111 ⏟ n \begin{matrix} \underbrace{ 111\cdots111 } \\n \end{matrix} 111111n的整数都不是平方数,n > 2。
证明思路:事实上,不论该数是二进制数还是十进制数,结论都是成立的。

  1. 若该数是二进制数(约定:用下标2表示该数为二进制数,不带下标则为十进制数),则:
    ( 111 ⋯ 111 ⏟ n ) 2 = 2 n − 1 (\begin{matrix} \underbrace{ 111\cdots111 } \\n \end{matrix})_2=2^{n}-1 ( 111111n)2=2n1这显然是奇数.
    利用反证法,假设 2 n − 1 ( n > 2 ) 2^{n}-1(n>2) 2n1(n>2)是平方数,
    故设 2 n − 1 = t 2 2^{n}-1=t^{2} 2n1=t2,其中 t = 2 k + 1 , k ∈ Z t=2k+1,k\in \mathbb{Z} t=2k+1,kZ,
    展开有:
    2 n − 1 = t 2 = 4 k 2 + 4 k + 1 2^{n}-1=t^{2}=4k^{2}+4k+1 2n1=t2=4k2+4k+1
    ⇒ 2 n − 2 = 4 k ( k + 1 ) \Rightarrow 2^{n}-2=4k(k+1) 2n2=4k(k+1)
    由于 n > 2 n>2 n>2,有:
    2 n − 1 − 1 = 2 k ( k + 1 ) 2^{n-1}-1=2k(k+1) 2n11=2k(k+1)
    注意到等式左侧是奇数,右侧是偶数,矛盾,进而推出假设不成立.
    因而原命题成立.
  2. 若该数是十进制数类似可证:
    111 ⋯ 111 ⏟ n = 1 0 n − 1 9 \begin{matrix} \underbrace{ 111\cdots111 } \\n \end{matrix}=\frac{10^n-1}{9} 111111n=910n1
    这显然是奇数.
    假设其是完全平方数,设 t = 2 k + 1 , k ∈ Z , t=2k+1,k\in \Z, t=2k+1,kZ, 1 0 n − 1 9 = t 2 = 4 k 2 + 4 k + 1 \frac{10^n-1}{9}=t^2=4k^2+4k+1 910n1=t2=4k2+4k+1
    进而有: 1 0 n − 1 = 36 k 2 + 36 k + 9 ⇒ 1 0 n − 10 = 36 ( k 2 + k ) 10^n-1=36k^2+36k+9\Rightarrow 10^n-10=36(k^2+k) 10n1=36k2+36k+910n10=36(k2+k)
    两侧同除以2: 5 ( 1 0 n − 1 − 1 ) = 18 ( k 2 + k ) 5(10^{n-1}-1)=18(k^2+k) 5(10n11)=18(k2+k)
    注意到等式左侧为奇数,右侧为偶数,矛盾,假设不成立,原命题成立。

第二章

题9

题目:
证明:如果 g c d ( a , b ) = 1 gcd(a, b) = 1 gcd(a,b)=1,且 g c d ( a , c ) = 1 gcd(a, c) = 1 gcd(a,c)=1,则 g c d ( a , b c ) = 1 gcd(a, bc) = 1 gcd(a,bc)=1
证明思路:涉及gcd()=1的问题通常利用Bezout定理求解
由Bezout定理知:
g c d ( a , b ) = 1 ⇒ ∃ x 1 , y 1 ∈ Z , 使 x 1 a + y 1 b = 1 gcd(a,b)=1\Rightarrow\exists x_1,y_1\in\mathbb{Z},使x_1a+y_1b=1 gcd(a,b)=1x1,y1Z,使x1a+y1b=1
g c d ( a , c ) = 1 ⇒ ∃ x 2 , y 2 ∈ Z , 使 x 2 a + y 2 c = 1 gcd(a,c)=1\Rightarrow\exists x_2,y_2\in\mathbb{Z},使x_2a+y_2c=1 gcd(a,c)=1x2,y2Z,使x2a+y2c=1
所以我们可以利用1作如下的等式代换:
1 = x 1 a + y 1 b = x 1 a + y 1 b ( x 2 a + y 2 c ) = ( x 1 + x 2 y 1 b ) a + ( y 1 y 2 ) b c \begin{equation*} \begin{aligned} 1 &= x_1a+y_1b \\ &= x_1a+y_1b(x_2a+y_2c) \\ &= (x_1+x_2y_1b)a+(y_1y_2)bc\\ \end{aligned} \end{equation*} 1=x1a+y1b=x1a+y1b(x2a+y2c)=(x1+x2y1b)a+(y1y2)bc
由Bezout定理易知: g c d ( a , b c ) = 1 gcd(a,bc)=1 gcd(a,bc)=1.

题10

题目:
证明:如果 g c d ( a , b ) = 1 gcd(a, b) = 1 gcd(a,b)=1,则 g c d ( a , b n ) = 1 gcd(a, b^{n}) = 1 gcd(a,bn)=1 n n n是任意正整数。(提示:利用以上习题的结论。)
证明思路:利用题9的结论即可
由题9知:
g c d ( a , b ) = 1 ⇒ g c d ( a , b 2 ) = 1 gcd(a,b)=1\Rightarrow gcd(a,b^{2})=1 gcd(a,b)=1gcd(a,b2)=1
再次使用题9的结论有:
g c d ( a , b ) = 1 , g c d ( a , b 2 ) = 1 ⇒ g c d ( a , b 3 ) = 1 gcd(a,b)=1,gcd(a,b^{2})=1\Rightarrow gcd(a,b^{3})=1 gcd(a,b)=1,gcd(a,b2)=1gcd(a,b3)=1
依次类推不难得到结论 g c d ( a , b n ) = 1 , n ∈ N ∗ gcd(a,b^{n})=1,n\in\N^{*} gcd(a,bn)=1,nN.

题11

题目:
证明:如果 g c d ( a , b ) = 1 gcd(a, b) = 1 gcd(a,b)=1,则 g c d ( a n , b n ) = 1 gcd(a^{n},b^{n})=1 gcd(an,bn)=1 n n n是任意正整数。(提示:利用以上习题的结论。)
证明思路:利用题10的结论即可.
由题10得:
g c d ( a , b ) = 1 ⇒ g c d ( a , b n ) = 1 gcd(a,b)=1\Rightarrow gcd(a,b^{n})=1 gcd(a,b)=1gcd(a,bn)=1
题10的结论可以对 g c d ( a , b ) gcd(a,b) gcd(a,b)中的a或b使用.
于是再次利用题10的结论:
g c d ( a , b n ) = 1 ⇒ g c d ( a n , b n ) = 1 gcd(a,b^{n})=1\Rightarrow gcd(a^{n},b^{n})=1 gcd(a,bn)=1gcd(an,bn)=1

题12

题目:
证明:对任意整数 a a a b b b d d d g c d ( a d , b d ) = g c d ( a , b ) d gcd(a^{d},b^{d})=gcd(a,b)^{d} gcd(ad,bd)=gcd(a,b)d
证明思路:这里提供两种证明的思路:
法一利用题11的结论即可.
不妨设 g c d ( a , b ) = c gcd(a,b)=c gcd(a,b)=c,则由性质1

g c d ( a , b ) = c ⇔ g c d ( a c , b c ) = 1 , c > 0 gcd(a,b)=c\Leftrightarrow gcd(\frac{a}{c},\frac{b}{c})=1,c>0 gcd(a,b)=cgcd(ca,cb)=1,c>0

我们得到:
g c d ( a c , b c ) = 1 gcd(\frac{a}{c},\frac{b}{c})=1 gcd(ca,cb)=1
利用题11的结论,有:
g c d ( ( a c ) d , ( b c ) d ) = 1 gcd((\frac{a}{c})^{d},(\frac{b}{c})^{d})=1 gcd((ca)d,(cb)d)=1
性质一(注意性质一是充分必要的),我们得到:
g c d ( a d , b d ) = c d gcd(a^{d},b^{d})=c^{d} gcd(ad,bd)=cd
g c d ( a , b ) gcd(a,b) gcd(a,b)重新代入 c c c,得到:
g c d ( a d , b d ) = g c d ( a , b ) d gcd(a^{d},b^{d})=gcd(a,b)^{d} gcd(ad,bd)=gcd(a,b)d
此即我们要证明的结论.
补充:性质一的证明利用Bezout定理即可.
法二:利用算术基本定理.
算术基本定理的定义此处不加赘述.
不妨设 a = p 1 a 1 p 2 a 2 ⋯ p k a k , b = p 1 b 1 p 2 b 2 ⋯ p k b k a=p_1^{a_1}p_2^{a_2}\cdots p_k^{a_k},b=p_1^{b_1}p_2^{b_2}\cdots p_k^{b_k} a=p1a1p2a2pkak,b=p1b1p2b2pkbk,其中 p i ( i ∈ { 1 , 2 , ⋯   , k } ) p_i(i\in\left \{ 1,2,\cdots,k \right \}) pi(i{1,2,,k})均为不同的素数.
g c d ( a d , b d ) = p 1 m i n ( a 1 d , b 1 d ) p 2 m i n ( a 2 d , b 2 d ) ⋯ p k m i n ( a k d , b k d ) = p 1 m i n ( a 1 , b 1 ) d p 2 m i n ( a 2 , b 2 ) d ⋯ p k m i n ( a k , b k ) d = ( p 1 m i n ( a 1 , b 1 ) p 2 m i n ( a 2 , b 2 ) ⋯ p k m i n ( a k , b k ) ) d = ( g c d ( a , b ) ) d \begin{equation*} \begin{aligned} gcd(a^{d},b^{d}) &= p_1^{min(a_1d,b_1d)}p_2^{min(a_2d,b_2d)}\cdots p_k^{min(a_kd,b_kd)} \\ &= p_1^{min(a_1,b_1)d}p_2^{min(a_2,b_2)d}\cdots p_k^{min(a_k,b_k)d} \\ &= (p_1^{min(a_1,b_1)}p_2^{min(a_2,b_2)}\cdots p_k^{min(a_k,b_k)})^{d}\\ &= (gcd(a,b))^{d}\\ \end{aligned} \end{equation*} gcd(ad,bd)=p1min(a1d,b1d)p2min(a2d,b2d)pkmin(akd,bkd)=p1min(a1,b1)dp2min(a2,b2)dpkmin(ak,bk)d=(p1min(a1,b1)p2min(a2,b2)pkmin(ak,bk))d=(gcd(a,b))d
这样我们就证明了原命题.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值