CINTA第一次作业

第一章

迭代版本的乘法

int mul(int a, int b)
{
    int res = 0;
    while(b)
    {
        if(b & 1) res += a;
        a <<= 1;
        b >>= 1;
    }
    return res;
}

除法算法的证明

除法算法
对任意给定的整数 a a a b b b,其中 b > 0 b>0 b>0,存在唯一的整数对 q q q(商)和 r r r(余数)使得,
a = q b + r a = qb + r a=qb+r 0 ≤ r < b 0 ≤ r < b 0r<b

由于存在性的证明在书上已有提及,故我们只需要证明:
0 ≤ r < b 0\leq r<b 0r<b
q q q r r r的唯一性
①假设 r ≥ b r\geq b rb,则:
对于集合S: S = { a − b k : k ∈ Z 且 a − b k ≥ 0 } S=\left \{ a-bk:k\in \Z且a-bk\geq 0 \right \} S={abk:kZabk0}
r r r是其中的最小元且满足 r = a − q b r=a-qb r=aqb.
由于 r ≥ b r\geq b rb,则:
r ′ = a − ( q + 1 ) b ≥ 0 r'=a-(q+1)b\geq 0 r=a(q+1)b0
因而 r ′ ∈ S r'\in S rS r ′ < r r'<r r<r,这与 r r r是最小元矛盾.
故假设不成立,原命题成立.
②由 q q q的唯一性不难知道 r = a − q b r=a-qb r=aqb同样具有唯一性,
故只需证明 q q q的唯一性.
不妨假设存在 q 1 , r 1 , q 2 , r 2 ∈ Z , ( q 1 ≠ q 2 , r 1 ≠ r 2 ) {q_{1}}^{},{r_{1}}^{},{q_{2}}^{},{r_{2}}^{}∈Z,(q1≠q2,r 1≠r2) q1,r1,q2,r2Z,(q1=q2,r1=r2)使:
a = q 1 b + r 1 = q 2 b + r 2 a={q_{1}}^{}b+{r_{1}}^{}={q_{2}}^{}b+{r_{2}}^{} a=q1b+r1=q2b+r2
则:
∣ r 1 − r 2 ∣ = ∣ q 1 b − q 2 b ∣ ≥ b \left |{r_{1}}^{} -{r_{2}}^{}\right |=\left |{q_{1}}^{}b-{q_{2}}^{}b \right |≥b r1r2=q1bq2bb
这显然与 0 ≤ r 1 , r 2 < b 0≤{r_{1}}^{},{r_{2}}^{}<b 0r1,r2<b矛盾,从而假设不成立.
q 1 = q 2 q_1=q_2 q1=q2 q q q的唯一性得证.

第二章

迭代版本的gcd

int gcd(int a,int b)
{
    while(b)
    {
        int t = a % b;
        a = b;
        b = t;
    }
    return a;
}

迭代版本的egcd

//求gcd(a,b)的Bezout系数x和y,即xa+yb=gcd(a,b)
int egcd(int a, int b, int *x, int *y)
{
    int r1 = 1, s1 = 0, r2 = 0, s2 = 1;
    while(b)
    {
        int q = a / b, t = a % b, tr = r1, ts = s1;
        r1 = r2, s1 = s2, a = b;
        r2 = tr - q * r2, s2 = ts - q * s2, b = t;
    }
    *x = r1, *y = s1;
    return a;
}

递归版本的egcd

//从最深处(即b=0)开始递归计算
//递归从bx+(a%b)y=d得到ax'+by'=d
//其中,x'=y, y'=x-(a/b)*y
int exgcd(int a, int b, int *x, int *y)
{
    if(!b)
    {
        *x = 1, *y = 0;
        return a;
    }
    int d = exgcd(b, a % b, x, y);

	//完成x'和y'的赋值
    int t = *x;
    *x = *y;
    *y = t - a / b * (*x);
    return d;
}

欧拉函数

int phi(int n)
{
	int res = 0;
	for(int i = 1; i < n; i ++ )
	{
		if(gcd(i, n) == 1) ++ res;
	}
	return res;
}

课后习题6

题目:假设 g a ≡ 1 ( m o d m ) g^{a} ≡ 1 \pmod m ga1(modm) g b ≡ 1 ( m o d m ) g^{b} ≡ 1 \pmod m gb1(modm),请证明:
g g c d ( a , b ) ≡ 1 ( m o d m ) g^{gcd(a,b)} \equiv1\pmod m ggcd(a,b)1(modm)
法一无穷递降法
详细见链接

法二:利用同余运算的性质
先介绍一个引理(其证明思路放在法二的最后)

g a ≡ 1 ( m o d m ) ⇒ g k a ≡ 1 ( m o d m ) , k ∈ Z g^a\equiv1\pmod m\Rightarrow g^{ka}\equiv1\pmod m,k\in \Z ga1(modm)gka1(modm),kZ

由Bezout定理有:
∃ r , s ∈ Z , 使 a r + b s = g c d ( a , b ) \exist r,s\in \Z,使ar+bs=gcd(a,b) r,sZ,使ar+bs=gcd(a,b)
由上述引理不难得到:
g a ≡ 1 ( m o d m ) ⇒ g a r ≡ 1 ( m o d m ) g^a\equiv1\pmod m\Rightarrow g^{ar}\equiv1\pmod m ga1(modm)gar1(modm)
g b ≡ 1 ( m o d m ) ⇒ g b s ≡ 1 ( m o d m ) g^b\equiv1\pmod m\Rightarrow g^{bs}\equiv1\pmod m gb1(modm)gbs1(modm)
从而有:
g a r + b s ≡ g a r ⋅ g b s ≡ 1 ( m o d m ) g^{ar+bs}\equiv g^{ar}\cdot g^{bs}\equiv 1\pmod m gar+bsgargbs1(modm)
即:
g g c d ( a , b ) ≡ 1 ( m o d m ) g^{gcd(a,b)}\equiv1\pmod m ggcd(a,b)1(modm)


引理的证明
①当 k ≥ 0 k\geq0 k0时:
g k a ≡ g a ⋅ g a ⋯ g a ⏟ k ≡ 1 ( m o d m ) g^{ka}\equiv\begin{matrix} \underbrace{ g^a\cdot g^a\cdots g^a } \\k \end{matrix} \equiv1\pmod m gka gagagak1(modm)
②当 k < 0 k<0 k<0时:
由于 g a ≡ 1 ( m o d m ) g^a\equiv 1\pmod m ga1(modm),故: g − a ≡ 1 ( m o d m ) g^{-a}\equiv 1\pmod m ga1(modm)
进而有,
g k a ≡ ( g − a ) − k ≡ ( g − a ) ⋅ ( g − a ) ⋯ ( g − a ) ⏟ − k ≡ 1 ( m o d m ) g^{ka}\equiv (g^{-a})^{-k}\equiv \begin{matrix} \underbrace{ (g^{-a})\cdot (g^{-a})\cdots (g^{-a}) } \\-k \end{matrix}\equiv 1\pmod m gka(ga)k (ga)(ga)(ga)k1(modm)
综上所述,引理成立。


法三:从循环群得到的一点小启发:
构造如下集合S:
S = { a : g a ≡ 1 ( m o d m ) , a > 0 } S=\left \{a:g^a\equiv1\pmod m ,a>0\right \} S={a:ga1(modm),a>0}
不难知道:S是全体自然数集合 N ∗ \N^* N的一个子集.
由良序原则知:S中一定存在最小元,记作 x x x.
不妨假设 x ∤ a x\nmid a xa,设 a = q x + r , q , r ∈ Z , 0 < r < x a=qx+r,q,r\in\Z,0<r<x a=qx+r,q,rZ,0<r<x,则:
g a ≡ g q x + r ≡ g r ≡ 1 ( m o d m ) g^{a}\equiv g^{qx+r} \equiv g^r\equiv 1\pmod m gagqx+rgr1(modm)
不难发现 r ∈ S r\in S rS,但是 r < x r<x r<x,这就与 x x x是最小元矛盾.
故假设不成立,即 x ∣ a x\mid a xa.
同理可证得 x ∣ b x\mid b xb,进而有:
x ∣ a , x ∣ b ⇒ x ∣ g c d ( a , b ) x\mid a, x\mid b\Rightarrow x\mid gcd(a,b) xa,xbxgcd(a,b)
不妨设 g c d ( a , b ) = k x , k ∈ Z gcd(a,b)=kx,k\in \Z gcd(a,b)=kx,kZ,利用同余运算的性质有:
g g c d ( a , b ) ≡ g k x ≡ 1 ( m o d m ) g^{gcd(a,b)}\equiv g^{kx}\equiv 1\pmod m ggcd(a,b)gkx1(modm)
证毕.

课后习题8

证明:如果 g c d ( a , b ) = d gcd(a, b) = d gcd(a,b)=d,则 g c d ( a / d , b / d ) = 1 gcd(a/d, b/d) = 1 gcd(a/d,b/d)=1
证明思路:利用Bezout定理即可。
g c d ( a , b ) = d ⇒ ∃ x , y ∈ Z , x a + y b = d gcd(a,b)=d\Rightarrow\exist x,y\in \Z,xa+yb =d gcd(a,b)=dx,yZ,xa+yb=d
由于 d = g c d ( a , b ) d=gcd(a,b) d=gcd(a,b),则: d ∣ a d|a da d ∣ b d|b db
因而:
x a d + y b d = 1 x\frac{a}{d}+y\frac{b}{d}=1 xda+ydb=1
即: ∃ x , y ∈ Z , x a d + y b d = 1 \exist x, y\in \Z,x\frac{a}{d}+y\frac{b}{d}=1 x,yZ,xda+ydb=1
由Bezout定理知: g c d ( a d , b d ) = 1 gcd(\frac{a}{d},\frac{b}{d})=1 gcd(da,db)=1


事实上,对原命题稍加改动可以使该命题是充分且必要的,即:
g c d ( a d , b d ) = 1 , d > 0 ⇔ g c d ( a , b ) = d gcd(\frac{a}{d},\frac{b}{d})=1,d>0\Leftrightarrow gcd(a,b) = d gcd(da,db)=1,d>0gcd(a,b)=d
⇐ \Leftarrow 已证,我们证明 ⇒ \Rightarrow
由Bezout定理有:
∃ x , y ∈ Z , x a d + y b d = 1 \exist x,y\in \Z ,x\frac{a}{d}+y\frac{b}{d}=1 x,yZ,xda+ydb=1
即:
x a + y b = d xa+yb=d xa+yb=d
再次使用Bezout定理可知: g c d ( a , b ) ∣ d gcd(a,b)|d gcd(a,b)d
注意隐含条件 d ∣ a , d ∣ b d|a,d|b da,db,从而有: d ∣ g c d ( a , b ) d|gcd(a,b) dgcd(a,b)
d > 0 d>0 d>0,显然有: d = g c d ( a , b ) d=gcd(a,b) d=gcd(a,b)

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
好的,这里是50种不同国家的语言表达“我爱你”: 1. English - I love you 2. Spanish - Te quiero 3. French - Je t'aime 4. German - Ich liebe Dich 5. Italian - Ti amo 6. Portuguese - Eu te amo 7. Russian - Ya lyublyu tebya 8. Chinese (Mandarin) - Wo ai ni 9. Japanese - Aishiteru 10. Korean - Sarang hae 11. Arabic - Ana behibak (to a male) / Ana behibek (to a female) 12. Dutch - Ik hou van je 13. Danish - Jeg elsker dig 14. Swedish - Jag älskar dig 15. Norwegian - Jeg elsker deg 16. Finnish - Minä rakastan sinua 17. Polish - Kocham Cię 18. Czech - Miluji Tě 19. Hungarian - Szeretlek 20. Bulgarian - Obicham te 21. Greek - S'ayapo 22. Turkish - Seni seviyorum 23. Romanian - Te iubesc 24. Croatian - Volim te 25. Serbian - Volim te 26. Slovenian - Ljubim te 27. Slovak - Milujem Ťa 28. Estonian - Ma armastan sind 29. Latvian - Es tevi mīlu 30. Lithuanian - Aš tave myliu 31. Icelandic - Ég elska þig 32. Albanian - Te dua 33. Thai - Phom rak khun (to a male) / Chan rak khun (to a female) 34. Vietnamese - Anh ye^u em (to a female) / Em ye^u anh (to a male) 35. Indonesian - Saya cinta padamu 36. Filipino - Mahal kita 37. Hindi - Main tumse pyar karta hoon 38. Bengali - Ami tomake bhalobashi 39. Urdu - Main tumse muhabbat karta hoon 40. Marathi - Me tujhe pyaar kartaa hoo 41. Punjabi - Main tere pyar da haan 42. Telugu - Nenu ninnu premisthunnanu 43. Tamil - Naan unnai kaadhalikken 44. Malayalam - Njan ninnodenikkoo 45. Kannada - Naanu ninna preetisuttene 46. Gujrati - Hu tane pyar karoo chu 47. Nepali - Ma timilai maya garchu 48. Sinhala - Mama oyata arderyi 49. Burmese - Chit pa de 50. Mongolian - Bi chamd hairtai

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值