1 首先创建anaconda环境
在anaconda prompt控制台输入
conda create --name env_name python=3.x
将env_name改为你想要的环境名字,python换成你想要的版本。
2 找到并安装tensorflow-gpu对应的cuda 和cudnn,keras
具体请参照这篇文章。这篇文章讲的很详细。Anaconda安装tensorflow-gpu虚拟开发环境_anaconda安装gpu版本tensorflow_EthanPlay的博客-CSDN博客
3 检验tensorflow是否安装完毕
在控制台输入
python
进入python交互,再输入
import tensorflow
如果报错,很有可能是numpy版本不对。这时需要安装低版本的numpy。输入exit()退出交互。再输入
conda search numpy
可以看到很多numpy的版本,选择低版本安装。比如tensorflow1.15 安装numpy=1.19就可以使用。
4 检查cuda是否可用
和上述步骤一样进入交互后引入tensorflow,输入下列代码后没有报错。显示gpu 0。则安装成功。如果还是报错,可能是没有安装gpu版本的tensorflow。安装是的时候一定要指定是gpu版本的。
import tensorflow as tf
tf.config.list_physical_devices('GPU')