通俗解释TF-IDF

TF-IDF是一种衡量词在文档中重要性的方法。它通过词频TF和逆文档频率IDF综合评估,常用于信息检索和文本理解。TF-IDF值高的词对文档主题贡献大,低值词可能是常见词汇。此方法也可用于句表征任务中的词向量加权。
摘要由CSDN通过智能技术生成

TF-IDF

一篇文档中出现的每个词都有其重要性,当我们快速阅读一篇文章的时候,重要的词可以让我们马上理解这篇文章大致和什么相关,举个最经典的例子,如果扫描文章多次遇见“蜜蜂”或者“养殖”,那这两个词对于这篇文章的理解就不可忽视,而不重要的词例如“的”或者“了”,对我们理解文章内容就几乎没有帮助,那么如何衡量每一个词的重要性呢?

首先直接上公式如下
 tf  i d f ( t , d , D ) = t f ( t , d ) ×  idf  ( t , D ) \text { tf } i d f(t, d, D)=t f(t, d) \times \text { idf }(t, D)  tf idf(t,d,

TF-IDF(词频-逆文档频率)是一常用的文本特征表示方法。以下是一个使用TF-IDF实现的标准demo,并附有逐行注解和通俗易懂的说明: ```python from sklearn.feature_extraction.text import TfidfVectorizer # 创建TF-IDF向量化器实例 vectorizer = TfidfVectorizer() # 定义文本数据 corpus = [ "This is the first document.", "This document is the second document.", "And this is the third one.", "Is this the first document?" ] # 使用TF-IDF向量化器对文本数据进行转换 X = vectorizer.fit_transform(corpus) # 打印转换结果 print(X.toarray()) ``` 模型解释和原理技术说明: 1. TF-IDF(词频-逆文档频率)是一种用于衡量文本中词语重要性的方法,常用于文本特征表示和信息检索。 2. 在上述代码中,首先导入了`TfidfVectorizer`类,它是scikit-learn库中用于实现TF-IDF的向量化器。 3. 创建了一个TF-IDF向量化器实例`vectorizer`。 4. 定义了一个包含多个文本的文本数据列表`corpus`。 5. 将文本数据传递给TF-IDF向量化器的`fit_transform`方法,对文本数据进行转换,得到TF-IDF特征表示的矩阵`X`。 6. `X.toarray()`将矩阵`X`转换为数组形式,并打印转换结果。 通过以上代码和解释,一个NLP新手可以了解到: - TF-IDF是一种常用的文本特征表示方法,用于衡量词语在文本中的重要性。 - TF-IDF向量化器是一种实现TF-IDF的工具,可以将文本数据转换为TF-IDF特征表示的矩阵- 在使用TF-IDF向量化器时,需要将文本数据传递给`fit_transform`方法进行转换。 - 转换后的结果是一个矩阵,每行代表一个文本样本,每列代表一个词语,矩阵的值表示该词语在对应文本中的TF-IDF权重。 - 通过打印转换结果,可以查看TF-IDF特征表示的矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值