本篇笔记将以向量值随机变量 X = ( X 1 , … , X n ) T X=(X_1,\dots,X_n)^T X=(X1,…,Xn)T的协方差矩阵为例,研究其性质。在阅读笔记之前可先记下先导篇中的相关结论,尤其是该篇中任意方向发散程度章节的结论。本篇笔记主要参考借鉴的基础教材是《程序员的数学之概率统计》。
单位矩阵与圆
首先看一种最简单的情况,即协方差矩阵为单位矩阵。此时该矩阵有一个显著特征,即任意方向上的方差都为1。证明过程如下:
V [ u T X ] = u T V [ X ] u = u T I u = u T u = u ⋅ u = ∥ u ∥ 2 = 1 \mathrm{V}\left[\boldsymbol{u}^{T} \boldsymbol{X}\right]=\boldsymbol{u}^{T} \mathrm{V}[\boldsymbol{X}] \boldsymbol{u}=\boldsymbol{u}^{T} I \boldsymbol{u}=\boldsymbol{u}^{T} \boldsymbol{u}=\boldsymbol{u} \cdot \boldsymbol{u}=\|\boldsymbol{u}\|^{2}=1 V[uTX]=uTV[X]u=uTIu=uTu=u⋅u=∥u∥2=1
其原理可参考先导篇中的结论。
也就是说,上式其实表示任意方向上的标准偏差为1,从偏差的角度说,所有方向情况都一致,那这就符合圆的定义,用圆表现V[X]如下:
要注意的是,这个圆不能覆盖大部分可取的值,圆的半径只是标准差的大小,是一种偏差的平均情况。
只要协方差矩阵是单位阵,当协方差矩阵为2维的时候可以用上图的圆来表示,3维的时候可以用球体表示,n维的时候就是n维超球体。
对角矩阵与椭圆
上面讨论了协方差矩阵是单位阵的情况,那么去掉这么强的限制,换成一个相对弱一些的限制,如果协方差矩阵是对角阵时情况如何呢?其数学表述如下
V [ X ] = diag (