协方差矩阵的几何性质

本文探讨了协方差矩阵在向量值随机变量中的几何性质,包括单位矩阵对应圆,对角矩阵对应椭圆,以及一般矩阵如何对应倾斜的椭圆。通过特征值和特征向量分析协方差矩阵,揭示了其在多维空间中的形状表示,并指出协方差矩阵的局限性在于无法体现高阶相关性。
摘要由CSDN通过智能技术生成

本篇笔记将以向量值随机变量 X = ( X 1 , … , X n ) T X=(X_1,\dots,X_n)^T X=(X1,,Xn)T的协方差矩阵为例,研究其性质。在阅读笔记之前可先记下先导篇中的相关结论,尤其是该篇中任意方向发散程度章节的结论。本篇笔记主要参考借鉴的基础教材是《程序员的数学之概率统计》。

单位矩阵与圆

首先看一种最简单的情况,即协方差矩阵为单位矩阵。此时该矩阵有一个显著特征,即任意方向上的方差都为1。证明过程如下:
V [ u T X ] = u T V [ X ] u = u T I u = u T u = u ⋅ u = ∥ u ∥ 2 = 1 \mathrm{V}\left[\boldsymbol{u}^{T} \boldsymbol{X}\right]=\boldsymbol{u}^{T} \mathrm{V}[\boldsymbol{X}] \boldsymbol{u}=\boldsymbol{u}^{T} I \boldsymbol{u}=\boldsymbol{u}^{T} \boldsymbol{u}=\boldsymbol{u} \cdot \boldsymbol{u}=\|\boldsymbol{u}\|^{2}=1 V[uTX]=uTV[X]u=uTIu=uTu=uu=u2=1
其原理可参考先导篇中的结论。
也就是说,上式其实表示任意方向上的标准偏差为1,从偏差的角度说,所有方向情况都一致,那这就符合圆的定义,用圆表现V[X]如下:
在这里插入图片描述
要注意的是,这个圆不能覆盖大部分可取的值,圆的半径只是标准差的大小,是一种偏差的平均情况。
只要协方差矩阵是单位阵,当协方差矩阵为2维的时候可以用上图的圆来表示,3维的时候可以用球体表示,n维的时候就是n维超球体。

对角矩阵与椭圆

上面讨论了协方差矩阵是单位阵的情况,那么去掉这么强的限制,换成一个相对弱一些的限制,如果协方差矩阵是对角阵时情况如何呢?其数学表述如下
V [ X ] = diag ⁡ (

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值