机器学习笔记—监督学习介绍:分类与回归,泛化~过拟合与欠拟合(2)
明天开始就打数模美赛了,今天简单地介绍一下监督学习
以下都是本人在学习机器学习过程中的一些心得和笔记,仅供参考
文章目录
1.监督学习的介绍
监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。
- 想要根据给定输入预测某个结果,并且还有输入/输出对的示例时,即为监督学习
- 这些输入/输出对构成了训练集,利用它来构建机器学习模型
- 目标:对从未见过的新数据做出准确的预测
2.分类与回归
监督学习主要有两类:分别是分类与回归
接下来逐一介绍
2.1分类
2.1.1分类问题的目标
分类问题的目标是预测类别标签(class label),这些标签来自预定义的可选列表
举例来说:以鸢尾花数据集分类问题为例子,将新的鸢尾