机器学习笔记(通俗易懂)---监督学习介绍:分类与回归,泛化~过拟合与欠拟合(2)

本文介绍了监督学习的基本概念,包括分类与回归问题,如二分类和多分类,以及回归问题的目标。讨论了如何区分分类与回归问题,并概述了泛化、过拟合和欠拟合的概念,强调了找到合适模型复杂度的重要性。
摘要由CSDN通过智能技术生成

机器学习笔记—监督学习介绍:分类与回归,泛化~过拟合与欠拟合(2)

明天开始就打数模美赛了,今天简单地介绍一下监督学习

以下都是本人在学习机器学习过程中的一些心得和笔记,仅供参考


1.监督学习的介绍

监督学习:利用一组已知类别的样本调整分类器的参数,使其达到所要求性能的过程,也称为监督训练或有教师学习。

  • 想要根据给定输入预测某个结果,并且还有输入/输出对的示例时,即为监督学习
  • 这些输入/输出对构成了训练集,利用它来构建机器学习模型
  • 目标:对从未见过新数据做出准确的预测

2.分类与回归

监督学习主要有两类:分别是分类回归

接下来逐一介绍

2.1分类

2.1.1分类问题的目标

分类问题的目标是预测类别标签(class label),这些标签来自预定义的可选列表

举例来说:以鸢尾花数据集分类问题为例子,将新的鸢尾

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值