平衡小车之PID算法

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/nulidehahafr/article/details/84726706

一、直立控制(PD算法)

int balance(float Angle,float Gyro)//角度,角速度
{  
   float Bias,kp=300,kd=1;
     int balance;
     Bias=Angle-ZHONGZHI;       //求出平衡的速度中值
     balance=kp*Bias+Gyro*kd;   //计算平衡控制的电机PWM PD控制,KP是p系数,KD是D系数
     return balance;
}

 调试技巧:比例控制是引入了回复力,微分控制是引入了阻尼力,微分系数与转动惯量有关。

                   在小车质量一定的情况下,重心位置增高,因为需要的回复力减小,所以比例系数下降;转动惯量变大,所以微分控制系数增大。

                   在小车重心位置一定的情况下,质量增大,因为需要的回复力增大,比例控制系数增大;转动惯量变大,所以微分控制系数增大。

二、速度控制(PI算法)

int velocity(int encoder_left,int encoder_right)
{  
    static float Velocity,Encoder_Least,Encoder,Movement;
      static float Encoder_Integral;
      float kp=80,ki=0.4;
      //=============速度PI控制器=======================//    
        Encoder_Least =(Encoder_Left+Encoder_Right)-0;                    //获取最新速度偏差==测量速度(左右编码盘)
        Encoder *= 0.8;                                                        //一阶低通滤波器       
        Encoder += Encoder_Least*0.2;                                        //一阶低通滤波器
        Encoder_Integral +=Encoder;                                       //积分出位移  积分时间  10 ms
        Encoder_Integral=Encoder_Integral-Movement;                       //接收遥控器数据,控制前进后退
        if(Encoder_Integral>10000)      Encoder_Integral=10000;             //积分限幅
        if(Encoder_Integral<-10000)    Encoder_Integral=-10000;              //积分限幅    
        Velocity=Encoder*kp+Encoder_Integral*ki;                          //速度控制   
        return Velocity;
}

(1)为直立控制算法,(2)为速度控制算法,(3)为小车保持直立且速度为给定值的控制算法,由一个负反馈的直立PD控制器和一个正反馈的速度PI控制器组成。如下为控制原理图:

 

展开阅读全文

没有更多推荐了,返回首页