nn.AdaptiveAvgPool1d(1)和nn.AdaptiveAvgPool2d(1)的区别

`nn.AdaptiveAvgPool1d(1)` 和 `nn.AdaptiveAvgPool2d(1)` 都是自适应的平均池化层,但是它们之间有以下区别:

1. 输入张量的维度不同:`nn.AdaptiveAvgPool1d(1)` 用于处理 1D 张量(也称为序列数据),例如语音信号或时间序列数据;而 `nn.AdaptiveAvgPool2d(1)` 用于处理 2D 张量(也称为图像数据),例如灰度图或彩色图像。

2. 输入张量的形状不同:由于输入张量的维度不同,因此它们的形状也不同。例如,一个 1D 张量的形状可能为 `(batch_size, channels, sequence_length)`,而一个 2D 张量的形状可能为 `(batch_size, channels, height, width)`。

3. 池化操作的维度不同:`nn.AdaptiveAvgPool1d(1)` 对输入张量在序列维度上进行平均池化,即对每个序列位置的通道值求平均;而 `nn.AdaptiveAvgPool2d(1)` 则对输入张量在空间维度上进行平均池化,即对每个像素位置的通道值求平均。

4. 输出张量的形状不同:`nn.AdaptiveAvgPool1d(1)` 的输出张量的形状为 `(batch_size, channels, 1)`,即序列长度为 1;而 `nn.AdaptiveAvgPool2d(1)` 的输出张量的形状为 `(batch_size, channels, 1, 1)`,即高度和宽度都为 1。

总的来说,`nn.AdaptiveAvgPool1d(1)` 和 `nn.AdaptiveAvgPool2d(1)` 都是自适应的平均池化层,但是它们处理的输入张量的维度、形状和池化操作的维度以及输出张量的形状都有所不同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值