AdaptiveAvgPool1D内部实现

该博客介绍了如何使用PyTorch实现1D自适应平均池化操作。通过示例代码展示了 AdaptiveAvgPool1d 模块的工作原理,解释了其将输入数据按比例分割并进行平均池化的计算过程。示例中,输入数据为形状[N,C,L]的一维张量,输出形状为[N,C,m],其中m为指定的输出尺寸。
摘要由CSDN通过智能技术生成

公式:

# average adaptive pool1d
# suppose input data in shape of [N, C, L], `output_size` is m or [m],
# output shape is [N, C, m], adaptive pool divide L dimension
# of input data into m grids averagely and performs poolings in each
# grid to get output.
# adaptive avg pool performs calculations as follow:
#
#     for i in range(m):
#         lstart = floor(i * L / m)
#         lend = ceil((i + 1) * L / m)
#         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
#

import torch
import numpy as np
L = 4
M = 5

input = torch.ones(1, 1, L)
input[0, 0 , 2] = 0
print(input)

AdaptiveAvgPool1D = torch.nn.AdaptiveAvgPool1d(M)
output1 = AdaptiveAvgPool1D(input)
print(output1)

input = np.array(input)
for i in range(M):
    lstart = math.floor(i * L / M)
    lend = math.ceil((i + 1) * L / M)
    print(np.sum(input[:, :, lstart: lend], axis=2) / (lend - lstart))

输出:

tensor([[[1., 1., 0., 1.]]])
tensor([[[1.0000, 1.0000, 0.5000, 0.5000, 1.0000]]])
[[1.]]
[[1.]]
[[0.5]]
[[0.5]]
[[1.]]

参考:

paddle.nn - AdaptiveAvgPool1D - 《百度飞桨 PaddlePaddle v2.0 深度学习教程》 - 书栈网 · BookStack

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理心炼丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值