杭电1874-畅通工程续(最短路径,dijkstra,spfa,floyd)

畅通工程续

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 37458    Accepted Submission(s): 13826


Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。

现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
 

Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
 

Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
 

Sample Input
  
  
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
 

Sample Output
  
  
2 -1
 

Author
linle
 

Source



考察点:最短路径(dijkstra,floyd,spfa)

 

题目大意:现在有N个城镇M条路,给出起点和终点,问是否能到达,若能,求出最短的路长

 

其实这是一个典型的最短路径问题,我现在掌握的就是三种方法,dijkstra,spfa和floyd,其中floyd最容易写,但是时间复杂程度也是最高,三重for循环,用之前还是要深思呀!

好在这一题数据较小,不会超时;


下面给出三种方法的代码!


1:dijkstra

#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int map[210][210],dis[210],vis[210];
int m,n;
void dijkstra(int x,int y)
{
	memset(vis,0,sizeof(vis));
	int i,j,mark,mi;
	for(i=0;i<m;i++)
		dis[i]=map[x][i];//初始化起点到所有点的最短距离
	vis[x]=1;//标记访问过 
	dis[x]=0;//从x出发所以dis[x]=0 
	for(i=0;i<m;i++)
	{
		mark=-1;
		mi=INF;
		for(j=0;j<m;j++)
		{
			if(!vis[j]&&dis[j]<mi)//找到所有路中最短的一条,并标记 
			{
				mi=dis[j];
				mark=j;
			}
		}
		if(mark==-1)//如果没找到,就是结束了,跳出循环 
		break;
		vis[mark]=1;
		for(j=0;j<m;j++)//更新每个点到已访问点集合的最短距离 
		{
			if(!vis[j]&&dis[j]>dis[mark]+map[mark][j])
			dis[j]=dis[mark]+map[mark][j];
		}
	}
	if(dis[y]==INF)
	printf("-1\n");
	else
	printf("%d\n",dis[y]);
}
int main()
{
	int i,j,start,end,a,b,c;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		memset(map,INF,sizeof(map));//要先把图初始化为无穷大,即都不联通 
		for(i=0;i<n;i++)
		{
			scanf("%d%d%d",&a,&b,&c);
			if(map[a][b]>c)//为了防止输入多条路,就选择最短的一条 
			map[a][b]=map[b][a]=c;
		}
		scanf("%d%d",&start,&end);//输入起点和终点 
		dijkstra(start,end);
	}
	return 0;
}


2:floyd


#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int map[210][210];
int m,n;
void floyd(int x,int y)
{
	int i,j,k;
	for(k=0;k<m;k++)
	{
		for(i=0;i<m;i++)
		{
			for(j=0;j<m;j++)
			{
				if(map[i][j]>map[i][k]+map[k][j])//把k当成中间点,找出最小的一条路 
				map[i][j]=map[i][k]+map[k][j];
			}
		}
	}
	if(x==y)
	printf("0\n");
	else if(map[x][y]==INF)
	printf("-1\n");
	else
	printf("%d\n",map[x][y]);
}
int main()
{
	int i,j,start,end,a,b,c;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		memset(map,INF,sizeof(map));//要先把图初始化为无穷大,即都不联通 
		for(i=0;i<n;i++)
		{
			scanf("%d%d%d",&a,&b,&c);
			if(map[a][b]>c)//为了防止输入多条路,就选择最短的一条 
			map[a][b]=map[b][a]=c;
		}
		scanf("%d%d",&start,&end);//输入起点和终点 
		floyd(start,end);
	}
	return 0;
}


3:spfa


#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
int dis[210],vis[210],head[210];
int m,n,t;
struct node 
{
	int u,v,w,next;
}s[2000];
void addedge(int a,int b,int c)
{
	s[t].u=a;
	s[t].v=b;
	s[t].w=c;
	s[t].next=head[a];
	head[a]=t++;
}
void spfa(int x,int y)
{
	memset(vis,0,sizeof(vis));
	memset(dis,INF,sizeof(dis));
	dis[x]=0;
	vis[x]=1;
	queue<int> q;
	q.push(x);
	while(!q.empty())
	{
		int u=q.front();
		q.pop();
		vis[u]=0;
		for(int k=head[u];k!=-1;k=s[k].next)//把没访问过的且和u有关系的点都放在队列里 
		{
			int v=s[k].v;
			if(dis[v]>dis[u]+s[k].w)
			{
				dis[v]=dis[u]+s[k].w;//更新最短距离 
				if(!vis[v])
				{
					vis[v]=1;
					q.push(v);
				}
			}
		}
	}	
	if(dis[y]==INF)
	printf("-1\n");
	else
	printf("%d\n",dis[y]);
}

int main()
{
	int i,j,start,end,a,b,c;
	while(scanf("%d%d",&m,&n)!=EOF)
	{
		memset(head,-1,sizeof(head));
		t=0;
		for(i=0;i<n;i++)
		{
			scanf("%d%d%d",&a,&b,&c);
			
			addedge(a,b,c);
			addedge(b,a,c);//建立双向邻接表 
		}
		scanf("%d%d",&start,&end);//输入起点和终点  
		spfa(start,end);
	}
return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值