畅通工程续
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 37458 Accepted Submission(s): 13826
Problem Description
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
Author
linle
Source
考察点:最短路径(dijkstra,floyd,spfa)
题目大意:现在有N个城镇M条路,给出起点和终点,问是否能到达,若能,求出最短的路长
其实这是一个典型的最短路径问题,我现在掌握的就是三种方法,dijkstra,spfa和floyd,其中floyd最容易写,但是时间复杂程度也是最高,三重for循环,用之前还是要深思呀!
好在这一题数据较小,不会超时;
下面给出三种方法的代码!
1:dijkstra
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int map[210][210],dis[210],vis[210];
int m,n;
void dijkstra(int x,int y)
{
memset(vis,0,sizeof(vis));
int i,j,mark,mi;
for(i=0;i<m;i++)
dis[i]=map[x][i];//初始化起点到所有点的最短距离
vis[x]=1;//标记访问过
dis[x]=0;//从x出发所以dis[x]=0
for(i=0;i<m;i++)
{
mark=-1;
mi=INF;
for(j=0;j<m;j++)
{
if(!vis[j]&&dis[j]<mi)//找到所有路中最短的一条,并标记
{
mi=dis[j];
mark=j;
}
}
if(mark==-1)//如果没找到,就是结束了,跳出循环
break;
vis[mark]=1;
for(j=0;j<m;j++)//更新每个点到已访问点集合的最短距离
{
if(!vis[j]&&dis[j]>dis[mark]+map[mark][j])
dis[j]=dis[mark]+map[mark][j];
}
}
if(dis[y]==INF)
printf("-1\n");
else
printf("%d\n",dis[y]);
}
int main()
{
int i,j,start,end,a,b,c;
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(map,INF,sizeof(map));//要先把图初始化为无穷大,即都不联通
for(i=0;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
if(map[a][b]>c)//为了防止输入多条路,就选择最短的一条
map[a][b]=map[b][a]=c;
}
scanf("%d%d",&start,&end);//输入起点和终点
dijkstra(start,end);
}
return 0;
}
2:floyd
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int map[210][210];
int m,n;
void floyd(int x,int y)
{
int i,j,k;
for(k=0;k<m;k++)
{
for(i=0;i<m;i++)
{
for(j=0;j<m;j++)
{
if(map[i][j]>map[i][k]+map[k][j])//把k当成中间点,找出最小的一条路
map[i][j]=map[i][k]+map[k][j];
}
}
}
if(x==y)
printf("0\n");
else if(map[x][y]==INF)
printf("-1\n");
else
printf("%d\n",map[x][y]);
}
int main()
{
int i,j,start,end,a,b,c;
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(map,INF,sizeof(map));//要先把图初始化为无穷大,即都不联通
for(i=0;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
if(map[a][b]>c)//为了防止输入多条路,就选择最短的一条
map[a][b]=map[b][a]=c;
}
scanf("%d%d",&start,&end);//输入起点和终点
floyd(start,end);
}
return 0;
}
3:spfa
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
int dis[210],vis[210],head[210];
int m,n,t;
struct node
{
int u,v,w,next;
}s[2000];
void addedge(int a,int b,int c)
{
s[t].u=a;
s[t].v=b;
s[t].w=c;
s[t].next=head[a];
head[a]=t++;
}
void spfa(int x,int y)
{
memset(vis,0,sizeof(vis));
memset(dis,INF,sizeof(dis));
dis[x]=0;
vis[x]=1;
queue<int> q;
q.push(x);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(int k=head[u];k!=-1;k=s[k].next)//把没访问过的且和u有关系的点都放在队列里
{
int v=s[k].v;
if(dis[v]>dis[u]+s[k].w)
{
dis[v]=dis[u]+s[k].w;//更新最短距离
if(!vis[v])
{
vis[v]=1;
q.push(v);
}
}
}
}
if(dis[y]==INF)
printf("-1\n");
else
printf("%d\n",dis[y]);
}
int main()
{
int i,j,start,end,a,b,c;
while(scanf("%d%d",&m,&n)!=EOF)
{
memset(head,-1,sizeof(head));
t=0;
for(i=0;i<n;i++)
{
scanf("%d%d%d",&a,&b,&c);
addedge(a,b,c);
addedge(b,a,c);//建立双向邻接表
}
scanf("%d%d",&start,&end);//输入起点和终点
spfa(start,end);
}
return 0;
}