[收藏]基于Spark Graphframes的社交关系图谱项目实战

大家好,我是老兵。

本文是基于Spark Graphframes社交关系图谱实战演练。

我将结合自身开发和项目经验,分别讲述社交关系图谱原理、图计算原理、Spark Graphframes图计算编程关联推荐实战等内容,帮助大家快速了解Spark Graphframes图计算的使用。

有兴趣交流沟通的朋友,欢迎添加我个人微信: youlong525。

1 什么是社交关系图谱

社交关系图谱的粗浅理解,即表达社交网络中的人与群体的关系。

我是谁? 我周围人是谁?我们有什么关系?

1)业务通俗理解

比如张三是个资深网络爱好者,也是个圈内达人。我们先来看看他的圈子:家庭圈、同事圈、朋友圈、区域圈、兴趣圈等。。

这些圈子中的角色对象。有的和张三关系紧密,如亲朋好友;有的毫不相识,即潜在对象;有的相隔万里却因相同的一个兴趣结识。。。

总体而言,这就是张三的社交关系图谱(简略版)。

个体属性 + 群体关系 => 关系图谱

2)数据层面理解

在理解社交关系图谱的业务含义后,我们去看看数据层面的含义。

群体关系个体属性,从数据角度可抽象成包含多维度的数据标签。

类似: 张三(name/age/sex)、朋友(friend/non-friend..)、同事(superior、colleague...)、区域(nearby、non-nearby)等。

最终提炼成丰富的标签化的用户社交数据。

关系标签值
朋友0(friend)、1(non-friend) ...
同事0(superior)、1(colleague) ...
亲戚0(parent)、1(non-parent) ...
区域0(nearby)、1(non-nearby)...

大多数公司的社交关系图谱建设,一般会基于企业内人与人的关系数据梳理,通过对数据的类型可信强度,不同来源的分析,构建统一的丰富的社交数据体系,形成关系知识图谱

2 社交关系图谱与图计算

2.1 图计算模型

上面我们将关系图谱经过数字化标签化处理,抽象成带有标签的个体属性和关系数据。

再来看看此时的张三,包含属性特征和一组组的关系特征

  • 属性特征: zhangsan<name、age、sex>

  • 关系特征:zhangsan ->(friends)-> userA

既然有了数据概念模型,程序中如何去实现呢?仔细看下,属性特征和关系特征数据在结构上符合图结构。

图由一个顶点集合和一条边(或者弧)集合组成,且每一条边都依附于顶点集合的两个顶点。
——来自百度百科

因此关系图谱数据在程序中可被抽象成"点——线"拓扑集合。基于此类数据结构的计算被称作图计算

2.2 图计算组件

关系图谱数据转换为图数据结构后,一般会使用图计算组件进行开发。

如下列举了生产中常见的图计算引擎特性,供大家参考。

1)Neo4J

  • 有很好的可视化界面,支持交互式查询

  • 小批量操作时查询效率高,对用户比较友好,适用于OLTP查询

  • 不支持数据分片,存储数据有限,数据的导入与更新操作耗时

2)Spark GraphX

  • spark的优点既是SparkGraphX的优点,支持海量数据

  • 重点在图计算,而非图存储和查询领域,适合OLAP领域

  • 为Scala提供接口,运算基于RDD

  • 支持常见的图算法

3)Spark GraphFrame

  • 运算基于Spark GraphFrame

  • 为Python、Java和Scala提供了统一的接口,能够使用GraphX的全部算法

  • 加入新的图算法(motif finding/BFS)

  • 图的存储和读取;GraphFrames与DataFrame的数据源完全兼容,支持以Parquet、Json以及Csv等格式完成图的存储与读取。

4)GraphFrames vs GraphX

由于环境和项目技术选型所限,本文选择Spark Graphframes。大家也可以选择Spark Graphx,且GraphFrames和GraphX可相互转化。

// GraphFrames转换为GraphX
val g: Graph[Row, Row] = gf.toGraphX()
// GraphX转换为GraphFrames
val gf: GraphFrame = GraphFrame.fromGraphX(g)

这里我也列出了Spark GraphXSpark Graphframes的区别。

GraphFramesGraphX
数据模型DataFramesRDDs
开发语言Scala/Java/PythonScala
使用场景数据查询、图计算图计算
顶点IDAny TypeLong
点边属性DataFrame columnsAny Type(VD, ED)
返回类型GraphFrame、DataFrameGraph[VD, ED] 、RDD[Long, VD]

3 Spark GraphFrames图计算实战

编程环境: Jupter
编程语言: Python
技术组件: Spark Graphframes
实现难度: 中等(可替换为Spark GraphX)

3.1 Spark graphframes基本语法

GraphX中常用算法在GraphFrame的调用方法:

1) 创建图对象(示例)

// 定义顶点
vertices = spark.createDataFrame(
      [("a", "Alice", 34), ("b", "Bob", 36)], \
      ["id", "name", "age"])

// 定义边
edges = spark.createDataFrame(
  [("a", "b", "friend")] , ["src", "dst", "relationship"])
  
// 创建图对象  
graph = GraphFrame(vertices,edges) 

2)获取边、角、出入度(示例)

// 计算顶点/边
graph.vertices.show()
graph.edges.show()

// 计算顶点度、出入度
graph.degrees.show()
graph.inDegrees.show()
graph.outDegrees.show()

3)依据点、边、出入度的子图筛选

 graph.vertices().filter("age > 30").show()
 graph.edges.filter("type == friends").show()
 graph.inDegrees.filter("inDegree >= 2").show()

4)模式发现(示例)

// 获取a->b的关系
motifs = graph.find("(a)-[e]->(b)")
motifs.show()

5)基本算法(示例)

// PageRank算法
graph.pageRank().maxIter() \
    .resetProbability().run() \
    .vertices().show()
    
// 广度优先算法
paths = graph.bfs("name='Alice'", "age > 34")
paths.show()

// 最短路径
graph.shortestPaths(landmarks=lm).show()

// 标签传播算法
graph.labelPropagation().show()

3.2 Spark Graphframes 实战—基于社交关系推荐好友

回到本文的核心,我们将关系图谱数据处理成结构,且选择Spark Graphframes作为技术组件,下面开始实战演练。

场景分析: 社交网络中,平台会推荐你关注人的喜爱物品,同时也会推荐关注人好友列表给你。

类似于物以类聚、人以群分的道理,有相同爱好、相同圈子的人可能是你感兴趣的人。

这里举个例子:假如userA是zhangsan的朋友,userB是userA的朋友且不是zhangsan的朋友;userB和zhangsan有相同兴趣,则将userB推荐给zhangsan。

逻辑分析: A->B and B -> C and A >< C,即A与B双向关系、B与C双向关系,但是A->C没有关系,输出(A,C)

1)配置环境

  • 环境中安装graphframes-xx.jar包,并指向安装位置

  • 代码中引入graphframes依赖

from pyspark.sql import SparkSession
from pyspark import SparkContext
from graphframes import *
from pyspark.sql.functions import *

// 定义SparkContext
conf = SparkConf().set("", "")

// 添加graphframes-xx.jar依赖包
spark = SparkSession \
        .builder \
        .config(conf=conf) \
        .config("spark.jar", "./graphframes-0.9.1-spark2.7-s_2.11.jar") \
        .getOrCreate()
        
sc = spark.sparkContext

2)定义图对象

  • friends表示朋友关系;follow表示跟随关系<可看作有相同爱好>

  • Alice和Charies是朋友关系;Esther和Charies没关系

  • Esther是Alice的跟随者,最终推荐Charies给Esther

// Vertics
v = spark.createDataFrame([
 ("a", "Alice", 34),
 ("b", "Bob", 36),
 ("c", "Charlie", 37),
 ("d", "David", 29),
 ("e", "Esther", 32),
 ("f", "Fanny", 38),
 ("g", "Gabby", 60)
], ["id", "name", "age"])

// Edges
e = spark.createDataFrame([
 ("a", "b", "follow"),
 ("a", "c", "friend"),
 ("a", "g", "friend"),
 ("b", "c", "friend"),
 ("c", "a", "friend"),
 ("c", "b", "friend"),
 ("c", "d", "follow"),
 ("c", "g", "friend"),
 ("d", "a", "follow"),
 ("d", "g", "friend"),
 ("e", "a", "follow"),
 ("e", "d", "follow"),
 ("f", "b", "follow"),
 ("f", "c", "follow"),
 ("f", "d", "follow"),
 ("g", "a", "friend"),
 ("g", "c", "friend"),
 ("g", "d", "friend")
], ["src", "dst", "relationship"])

// Create a GraphFrame
g = GraphFrame(v, e)

3)计算推荐好友

  • 方法1:使用模式匹配

  • 方法2:使用模式匹配后,取差集

// 计算关联好友
relationG = g.find("(a)-[ab]->(b)")  \
    .dropDuplicates() \
    .selectExpr("a.name as user", "b.name as recommended_user")

// 计算推荐好友
// recommend = g.find("(a)-[ab]->(b);(b)-[bc]->(c); !(a)-[ac]->(c);") 
recommend = g.find("(a)-[ab]->(b);(b)-[bc]->(c)") \
    .filter("a.id != c.id") \
    .filter("ab.relationship = 'follow' \
             and bc.relationship = 'friend'") \
    .dropDuplicates() \
    .selectExpr("a.name as user", "c.name as recommended_user") \
    .subtract(relationG)

4)结果输出

  • 结果输出(user, recomanduser列表)

  • 后续可继续分析

result = recommend.rdd.map(
      lambda x: (x["user"], x["recommended_user"]
)).sortBy(lambda x: x[0]).collect()

print(result)

5)补充:获取社交好友圈数量

获取社交图谱关系链中 "[relationship=='friends']>=2" 的数量

chain = g.find("(a)-[ab]->(b);(b)-[bc]->(c);(c)-[cd]->(d)") 

// 定义更新状态条件,关系为friends则+1
sumChain = lambda cnt, relation: when(
    relationship == 'friends', cnt + 1) \
  .otherwise(cnt)
  
// 应用到chain,计算好友数量
condition = reduce(lambda cnt, sumChain(
     cnt, col(e).relationship), \
     ["ab", "bc", "cd"], \
     lit(0))

// 计算好友圈数
chainWithFriends = chain.where(condition >= 2)
chainWithFriends.show()

4 写在最后

社交关系图谱由家庭、同事、区域、兴趣等组成社交标签体系,可以为企业基于社交维度用户分析挖掘提供数据基础。

同时基于多维度数据的特性,支持家庭关系兴趣偏好等相关业务场景,可助力企业从客户维度、产品维度等提供拓客的数据支持。

基于Spark Graphframes图计算技术,可快速实现企业级社交关系图谱项目的实施落地。本文内容仅供参考,关于项目的技术细节问题后续再继续补充。

  • 1
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,基于Spark MLlib的聚类实战可以按照以下步骤进行: 1. 数据准备:首先需要准备好数据,可以使用Spark来读取和处理数据。数据应该包含所有要聚类的特征,并且应该已经被清洗和预处理。 2. 特征工程:使用Spark的特征转换器来转换数据,例如将文本转换为向量、缩放特征等。 3. 模型训练:使用Spark的聚类算法来训练模型,例如K-means、高斯混合模型等。 4. 模型评估:使用Spark的评估器来评估模型的性能,例如Silhouette系数、轮廓分析等。 5. 模型应用:使用Spark的模型转换器来将模型应用于新数据,例如将新数据分配到聚类中心。 以下是一个基于Spark MLlib的K-means聚类实战的代码示例: ```python from pyspark.sql import SparkSession from pyspark.ml.feature import VectorAssembler from pyspark.ml.clustering import KMeans from pyspark.ml.evaluation import ClusteringEvaluator # 创建SparkSession spark = SparkSession.builder.appName("KMeansClustering").getOrCreate() # 读取数据 data = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("data.csv") # 特征转换 assembler = VectorAssembler(inputCols=data.columns, outputCol="features") data = assembler.transform(data).select("features") # 训练模型 kmeans = KMeans().setK(2).setSeed(1) model = kmeans.fit(data) # 模型评估 predictions = model.transform(data) evaluator = ClusteringEvaluator() silhouette = evaluator.evaluate(predictions) print("Silhouette with squared euclidean distance = " + str(silhouette)) # 应用模型 new_data = spark.read.format("csv").option("header", "true").option("inferSchema", "true").load("new_data.csv") new_data = assembler.transform(new_data).select("features") predictions = model.transform(new_data) predictions.show() ``` 这个代码示例演示了如何使用Spark MLlib来训练K-means聚类模型,评估模型性能,并将模型应用于新数据。需要注意的是,这个示例仅供参考,实际情况下需要根据数据的特点来选择合适的聚类算法和评估指标。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值