大数据笔试必看SQL篇(牛刀小试)

本文分享了大数据面试中常见的SQL题目,包括用户连续三天登录的统计、日/周/月留存计算、某时刻app最大在线人数以及部门平均收入排除极端值的计算,每个案例都提供了详细的解题思路和SQL代码实现,旨在帮助读者提升SQL解决实际问题的能力。
摘要由CSDN通过智能技术生成

大家好,我是老兵。

本期将为大家介绍大数据面试中常见的SQL真题。我尽量选取了几种不同场景的SQL计算方法,案例具有很强的代表性,在此基础可以衍生出很多场景,希望伙伴们看后可以进行思考。

文章旨在帮助大家抱团取暖,希望对小伙伴笔试会有所帮助。

1 app连续三天登录

题目介绍

用户登录行为日志中记录用户id登录时间字段,统计日志中连续三天登录的用户数,数据示意如下:

uidlogin_time
0012022-11-01
0012022-11-03
0022022-11-01
0022022-11-02
0022022-11-03

题目分析

这是个很经典的SQL笔试题,也是出镜率最高的类型。连续登录的含义如上图(用户002在2022-11-01~2022-11-03均有记录),指的是用户在某一时间段内每天均有登录记录。

通过分析可知连续登录时用户登录时间和其对应排名差值相等,这里使用uid开窗排序 + date_sub(dt,rank)来计算。

解题方法

1) 实现思路

  • 将用户分组并按照时间排序,并记录rank排名

  • 计算dt-rank的差值,差值与用户共同分组

  • 统计count并找出 count > 3的用户

2)SQL代码

select
  userid
  ,min(dt) as start_date
  ,max(dt) as end_date
  ,count(1) as times
from
(
  select 
    userid
    ,dt
    ,date_sub(dt, rn) as date_diff
    from
    (
      select 
        userid
        ,dt
        ,row_number() over(partition by
          userid order by dt) as rn
      from 
        user_tables
    )
)
group by 
  userid, date_diff
having times >= 3

2 日/周/月留存

题目介绍

用户登录行为日志中记录用户id登陆时间登录app字段,计算app某天的3日/7日/14日/30日用户留存。数据示意如下:

uiddtappid
0012022-11-01app01
0022022-11-03app01
0012022-11-03app02
0022022-11-02app01
0012022-11-05app01

题目分析

在互联网场景中用户留存是衡量APP用户活跃的重要指标之一,留存越高,则代表用户粘性越好。留存的含义为用户在时间t1活跃同时在时间t2再次活跃。

计算留存需要找到两个时间点,一个是统计日期t1(如2022-11-01),另一个点为留存时间t2(2022-11-01后的7日/14日/30日区间),两段数据进行关联且均有记录,最后取日期差即可得到留存。

解题方法

1)实现思路

  • 获取统计日期时间段数据并根据dt,appid,uid分组groupby

  • 获取留存时间段数据并根据dt,appid,uid分组groupby

  • join关联获取时间差,分别统计3日/14日/21日/30日留存

2)SQL代码

select 
  t1.appid,
  count(t1.uid) as active_users,
  count(case when datediff(t2.cu_dt,t1.cu_dt)=1 then t2.uid end) as day2_active_users,
  count(case when datediff(t2.cu_dt,t1.cu_dt)=2 then t2.uid end) as day3_active_users,
  count(case when datediff(t2.cu_dt,t1.cu_dt)=6 then t2.uid end) as day7_active_users,
  count(case when datediff(t2.cu_dt,t1.cu_dt)=13 then t2.uid end) as day14_active_users,
  count(case when datediff(t2.cu_dt,t1.cu_dt)=29 then t2.uid end) as day30_active_users,
  t1.dt
from 
(select
  apptypeid,
  uid,
  dt,
  from_unixtime(unix_timestamp(dt,'yyyyMMdd'),'yyyy-MM-dd') as cu_dt
from user_tables
where dt='${startDate}'
group by appid,uid,dt,from_unixtime(unix_timestamp(dt,'yyyyMMdd'),'yyyy-MM-dd')
)t1
left join
(select
  apptypeid,
  uid,
  dt,
  from_unixtime(unix_timestamp(dt,'yyyyMMdd'),'yyyy-MM-dd') as cu_dt
from user_tables
where dt>'${startDate}' and dt<='${startDate+29d}'
group by appid,uid,dt,from_unixtime(unix_timestamp(dt,'yyyyMMdd'),'yyyy-MM-dd')
) t2
on t1.appid=t2.appid and t1.uid=t2.uid
group by t1.appid,t1.dt

3 某时刻app最多在线人数

题目介绍

用户行为日志中记录用户idappid进入时间退出时间字段,计算同一时刻的app的最大人数,数据示意如下:

uidapp_idin_timeout_time
001app012022-11-01 11:00:012022-11-01 11:01:01
002app022022-11-01 11:03:022022-11-01 11:05:02
003app012022-11-01 11:03:092022-11-01 11:05:10
004app022022-11-01 11:07:102022-11-01 11:11:10
004app012022-11-01 11:09:102022-11-01 11:08:10

题目分析

此为经典状态计算SQL,常用于统计某时刻某状态的最大在线人数(直播、商场、车进出流等)。

此类问题最重要的是计算瞬时的最大计数,采用编码+合并的方法,将标志为+1标志为-1,最后union结果并根据appid进行sum()开窗并排序。

解题方法

1)实现思路

  • 计算瞬时计数。查询进出记录同时设置标志位,结果union合并

  • 根据appid开窗sum,组内根据dt升序和标志位降序

2)SQL代码

SELECT
  app_id,
  MAX(cnt) max_uv
FROM (
  SELECT
    appid,
    SUM(diff) OVER(PARTITION BY artical_id ORDER BY dt, diff DESC) cnt
  FROM (
    SELECT 
      app_id, in_time dt, 1 diff
    FROM user_tables
    WHERE appid != 0
    UNION ALL
    SELECT 
      app_id, out_time dt, -1 diff
    FROM user_tables
    WHERE appid != 0) t1 
) t2
GROUP BY 1
ORDER BY 2 DESC

4 计算部门除去最高和最低的平均收入

题目介绍

部门员工基本信息表中记录部门id员工id收入字段,计算部门员工的平均收入,数据示意如下:

dep_nouidsalary
d_00100118700
d_00100123000
d_00100215000
d_00100211000
d_00100230000

题目分析

使用窗口函数降序和升序分别排序取出最高和最低收入,计算平均收入。

解题方法

1)实现思路

  • 使用开窗函数,分别根据收入组内正序倒序排序

  • 计算平均收入

2)SQL代码

select a.dep_no,avg(a.salary)
from  
 (
 select *, rank() over( partition by dep_no order by salary ) as rk_1
 , rank() over( partition by dep_no order by salary desc) as rk_2 
 from user_tables
 )  a 
group by a.dep_no
where a.rk_1 >1 and a.rk_2 >1 

5 计算分类top3销售商品

题目介绍

商品浏览表记录:商品id用户id字段,计算每个商品类别下最受欢迎的Top3产品,数据示意如下:

p_iduid
p_001001
p_002002
P_001003
p_002004
P_001005

题目分析

这是一个非常常见计算前几名TopN的场景,一般先计算每个商品被每个用户浏览的次数,最后开窗计算商品浏览次数排序。

解题方法

1)实现思路

  • 计算每个商品下每个用户的浏览次数,放在临时表

  • 开窗函数计算每个商品被浏览次数排名

  • 计算每个商品浏览前3的用户

2)SQL代码

select
p_id,
uid,
cnt
from
(select
    p_id,
    uid,
    cnt,
    rank() over(partition by p_id order by cnt) rn
  from (
     select
       p_id,
       uid,
       count(*) cnt
    from user_tables
    group by
       p_id,
       uid
  )t1
) t2
where rn<=3;

本期为笔试系列初试牛刀,后续将持续更新更多SQL笔试真题,欢迎大家踊跃投稿建议

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值