前言
此篇主要总结到Hive,Flink,Spark出现数据倾斜的表现,原因和解决办法。首先会让大家认识到不同框架或者计算引擎处理倾斜的方案。最后你会发现计算框架只是“异曲”,文末总结才是“同工之妙”。点击收藏与分享,工作和涨薪用得到!!!
数据倾斜
数据倾斜最笼统概念就是数据的分布不平衡,有些地方数据多,有些地方数据少。在计算过程中有些地方数据早早地处理完了,有些地方数据迟迟没有处理完成,造成整个处理流程迟迟没有结束,这就是最直接数据倾斜的表现。
Hive

Hive数据倾斜表现
就是单说hive自身的MR引擎:发现所有的map task全部完成,并且99%的reduce task完成,只剩下一个或者少数几个reduce task一直在执行,这种情况下一般都是发生了数据倾斜。说白了就是Hive的数据倾斜本质上是MapReduce的数据倾斜。
Hive数据倾斜的原因
在MapReduce编程模型中十分常见,大量相同的key被分配到一个reduce里,造成一个reduce任务累死

本文深入探讨了Hive、Flink和Spark中数据倾斜的现象、原因及解决方案。Hive的数据倾斜表现为部分reduce任务延迟,可通过预聚合、调整配置等方法解决。Flink数据倾斜的迹象是反压和OOM,解决方法包括调整source并行度和使用两阶段聚合。Spark的数据倾斜解决策略包括Hive ETL预处理、过滤倾斜key和提高shuffle并行度。理解数据和业务是解决数据倾斜的关键。

被折叠的 条评论
为什么被折叠?



