【DL笔记1】Logistic回归:最基础的神经网络

文章系转载,尊重原创,请移步原文:

https://www.jianshu.com/p/4cf34bf158a1

       个人认为理解并掌握这个logistic regression是学习神经网络和深度学习最重要的部分,也是最基础的部分,学完这个再去看浅层神经网络、深层神经网络,会发现后者就是logistic重复了若干次(当然一些细节会有不同,但是原理上一模一样)。

一、什么是logictic regression

下面的图是Andrew Ng提供的一个用logistic regression来识别主子的图片的算法结构示意图:

左边x_{0}x_{12287}是输入(input),我们称之为特征(feather),常常用列向量x^{(i)}来表示(这里的i代表第i个训练样本,下面在只讨论一个样本的时候,就暂时省略这个标记,免得看晕了-_-|||),在图片识别中,特征通常是图片的像素值,把所有的像素值排成一个序列就是输入特征,每一个特征都有自己的一个权重(weight),就是图中连线上的w_{0}w_{12287},通常我们也把左右的权重组合成一个列向量W

中间的圆圈,我们可以叫它一个神经元,它接收来自左边的输入并乘以相应的权重,再加上一个偏置项b(一个实数),所以最终接收的总输入为:

                                                 x_{0}w_{0}+x_{1}w_{1}+....+x_{12287}w_{12287}+b=W^{T}x+b

但是这个并不是最后的输出,就跟神经元一样,会有一个激活函数(activation function)来对输入进行处理,来决定是否输出或者输出多少。Logistic Regression的激活函数是sigmoid函数,介于0和1之间,中间的斜率比较大,两边的斜率很小并在远处趋于零。长这样(记住函数表达式):
 

                                                                                     f(x) = \frac{1}{1+e^{-x}} 

 我们用y'来表示该神经元的输出,\sigma ()函数代表sigmoid,则可知:

                                                                                     y' = \sigma (w^{T}x+b)

这个y'可以看做是我们这个小模型根据输入做出的一个预测,在最开始的图对应的案例中,就是根据图片的像素在预测图片是不是猫。
y'对应的,每一个样本x都有自己的一个真实标签yy=1代表图片是猫,y=0代表不是猫。我们希望模型输出的y'可以尽可能的接近真实标签y,这样,这个模型就可以用来预测一个新图片是不是猫了。所以,我们的任务就是要找出一组Wb,使得我们的模型y' = \sigma (w^{T}x+b)可以根据给定的x,正确地预测y。在此处,我们可以认为,只要算出的y'大于0.5,那么y'就更接近1,于是可以预测为“是猫”,反之则“不是猫”。

以上就是Logistic Regression的基本结构说明。

二、怎么学习W和b

前面其实提到过了,我们需要学习到的W和b可以让模型的预测值y'与真实标签y尽可能地接近,也就是y'y的差距尽量地缩小。因此,我们可以定义一个损失函数(Loss function),来衡量y'y的差距:

                                                             L(y',y)=-[y*\log (y')+(1-y)*\log (1-y')]

可以暂时忽略后面这个看似复杂其实不复杂的表达式,只记住损失函数是L(y',y)就行了。
如何说明这个式子适合当损失函数呢?且看:

  • 当y=1时,L(y',y)=-log(y'),要使L最小,则y'要最大,则y'=1;
  • 当y=0时,L(y',y)=-log(1-y'),要使L最小,则y'要最小,则y'=0.

如此,便知L(y',y)符合我们对损失函数的期望,因此适合作为损失函数。

我们知道,x代表一组输入,相当于是一个样本的特征。但是我们训练一个模型会有很多很多的训练样本,也就是有很多很多的x,就是会有x_{1},,x_{2},...,x_{m}m个样本,它们可以写成一个大X 行向量

X = (x^{1}, x^{2},..., x^{m})

对应的样本的真实标签Y(也是行向量):

Y = (y^{1}, y^{2},..., y^{m})

通过我们的模型计算出的y'们也可以组成一个行向量:

Y' = (y'^{(1)}, y'^{(2)},..., y'^{(m)})

前面讲的损失函数L,对每个x都有,因此在学习模型的时候,我们需要看所有x平均损失,因此定义一个代价函数(Cost function)

J(W,b) = \frac{1}{m}*\sum_{i=1}^{m}L(y'^{(i)}, y^{(i)})

因此,我们的学习任务就可以用一句话来表述:

 Find W,b that minimize J(W,b)

Minimize。。。说起来简单做起来难,好在我们有计算机,可以帮我们进行大量重复地运算,于是在神经网络中,我们一般使用梯度下降法(Gradient Decent)

这个方法通俗一点就是,先随机在曲线上找一个点,然后求出该点的斜率,也称为梯度,然后顺着这个梯度的方向往下走一步,到达一个新的点之后,重复以上步骤,直到到达最低点(或达到我们满足的某个条件)。
如,对w进行梯度下降,则就是重复一下步骤(重复一次称为一个迭代

                                                                                    w := w - \alpha (\frac{\partial J}{\partial W}) 

其中:=代表“用后面的值更新”,α代表“学习率(learning rate)”,\frac{\partial J}{\partial W}就是J对w求偏导。其中:=代表“用后面的值更新”,α代表“学习率(learning rate)”,\frac{\partial J}{\partial W}就是J对w求偏导。 

回到我们的Logistic Regression问题,就是要初始化(initializing)一组Wb,并给定一个学习率,指定要迭代的次数(就是你想让点往下面走多少步),然后每次迭代中求出w和b的梯度,并更新Wb。最终的Wb就是我们学习到的Wb,把W和b放进我们的模型y' = \sigma (w^{T}x+b)中,就是我们学习到的模型,就可以用来进行预测了!

总结一下:

  • Logistic Regression模型:y' = \sigma (w^{T}x+b),记住使用的激活函数是sigmoid函数。
  • 损失函数:L(y',y)=-[y*\log (y')+(1-y)*\log (1-y')]衡量预测值y'与真实值y的差距,越小越好。
  • 代价函数:损失均值,J(W,b) = \frac{1}{m}*\sum_{i=1}^{m}L(y'^{(i)}, y^{(i)}),是Wb的函数,学习的过程就是寻找Wb使得J(W,b)最小化的过程。求最小值的方法是用梯度下降法。
  • 训练模型的步骤
    1. 初始化Wb
    2. 指定learning rate和迭代次数
    3. 每次迭代,根据当前W和b计算对应的梯度(JWb的偏导数),然后更新Wb
    4. 迭代结束,学得Wb,带入模型进行预测,分别测试在训练集合测试集上的准确率,从而评价模型
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值