时序问题处理

本文介绍了时间序列分析中判断序列平稳性的方法,包括列图观察、统计值比较和单位根检验。非平稳序列需要通过差分、取对数等方式转化为平稳序列,以便进行预测。自相关和偏自相关函数用于揭示序列内部结构。预测性评估常使用近似熵和样本熵。时间序列平滑处理有助于减少噪声,提高预测准确性,常见方法包括移动平均和局部回归平滑。
摘要由CSDN通过智能技术生成

1.时序是否平稳的判断

(1)绘制列图展示观察
(2)将序列划分成多份,查看其统计值(平均值、方差、自相关系数),如果统计值间相差很大,则不是平稳序列
(3)使用单位根检验定量判断某序列是否为平稳序列
    单位根检验:
        ADF Test(最常用)
        KPSS Test(检验趋势平稳性)
        PP Test

2.预测前将非平稳序列变平稳的原因

(1)对平稳序列进行预测要相对容易一些,预测结果也更可信
(2)大多数的统计预测方法最初都是为平稳时间序列设计的
(3)自回归模型本质是还是线性回归模型,其将序列自身的滞后作为预测因子,如果预测因子之间互不相关,线性回归的效果最优。序列的平稳化可解决序列自相关性问题,使预测因子近乎独立。

3.时序数据是否为平稳序列,非平稳序列要转变为平稳序列

平稳序列的转化:
    求序列的差分,最常见的处理方式,至少执行一次
    求序列的log值
    求序列的n次方根
    以上三种方式的结合

4.自相关和偏自相关函数

(1)自相关ACF
    一个序列的值与自己本身具有相关性,即序列的前一个值可以预测当前值
(2)偏自相关PACF
    偏自相关类似于自相关,但是更偏重序列与自身滞后序列的相关性,消除了由于较短滞后所导致的任何相关性

5.评估时间序列的可预测性

一个时间序列的模式越有规律,就越容易预测
(1)使用近似熵来量化,近似熵越高,预测难度越大
(2)使用样本熵

6.为什么要做时间序列平滑处理,如何做

(1)好处:
    减少噪声影响,过滤掉噪声,得到更真实的序列
    平滑处理后的序列可作为特征,更好的的解释序列本身
    可以更好的观察序列本身的趋势
(2)方法:
    取移动平均值
    做LOESS平滑(局部回归)
    做LOWESS平滑(局部加权回归)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

o0xgw0o

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值