1.时序是否平稳的判断
(1)绘制列图展示观察
(2)将序列划分成多份,查看其统计值(平均值、方差、自相关系数),如果统计值间相差很大,则不是平稳序列
(3)使用单位根检验定量判断某序列是否为平稳序列
单位根检验:
ADF Test(最常用)
KPSS Test(检验趋势平稳性)
PP Test
2.预测前将非平稳序列变平稳的原因
(1)对平稳序列进行预测要相对容易一些,预测结果也更可信
(2)大多数的统计预测方法最初都是为平稳时间序列设计的
(3)自回归模型本质是还是线性回归模型,其将序列自身的滞后作为预测因子,如果预测因子之间互不相关,线性回归的效果最优。序列的平稳化可解决序列自相关性问题,使预测因子近乎独立。
3.时序数据是否为平稳序列,非平稳序列要转变为平稳序列
平稳序列的转化:
求序列的差分,最常见的处理方式,至少执行一次
求序列的log值
求序列的n次方根
以上三种方式的结合
4.自相关和偏自相关函数
(1)自相关ACF
一个序列的值与自己本身具有相关性,即序列的前一个值可以预测当前值
(2)偏自相关PACF
偏自相关类似于自相关,但是更偏重序列与自身滞后序列的相关性,消除了由于较短滞后所导致的任何相关性
5.评估时间序列的可预测性
一个时间序列的模式越有规律,就越容易预测
(1)使用近似熵来量化,近似熵越高,预测难度越大
(2)使用样本熵
6.为什么要做时间序列平滑处理,如何做
(1)好处:
减少噪声影响,过滤掉噪声,得到更真实的序列
平滑处理后的序列可作为特征,更好的的解释序列本身
可以更好的观察序列本身的趋势
(2)方法:
取移动平均值
做LOESS平滑(局部回归)
做LOWESS平滑(局部加权回归)