论文笔记 ACL2021|CLEVE-Contrastive Pre-training for Event Extraction

124 篇文章 14 订阅

1 简介

论文题目:CLEVE-Contrastive Pre-training for Event Extraction
论文来源:ACL2021
论文链接:https://arxiv.org/pdf/2105.14485.pdf
代码链接:https://github.com/THU-KEG/CLEVE

1.1 动机

  • 现有的预训练方法没有考虑建模事件特征,导致开发的事件抽取模型不能充分利用大规模无监督数据。
  • 现存的事件抽取方法主要是监督范式,通常遭受数据缺乏和有限的普遍性。

1.2 创新

  • 提出CLEVE:一种利用AMR结构构建自监督信号的面向事件的对比预训练框架,更好地从大规模无监督数据和它们的语义结构(如:AMR)中学习事件知识。

2 背景知识

  • 事件模式归纳
    监督的事件抽取方法不能归纳不断出现的新事件类型和论元角色,为此,Chambers and Jurafsky探索通过无监督聚类从原始文本中归纳出事件模式
  • 对比学习
    对比学习是学习“邻居”的相似表示和“非邻居”的不同表示,进一步广泛用于各个领域的自监督表示学习。

3 方法

CLEVE的整体框架如下图,主要包含两个部分:事件语义预训练和事件结构预训练。
在这里插入图片描述

3.1 预处理

使用自动的AMR解析器将无监督语料库中的句子解析为AMR结构。每个AMR结构是一个有向无环图,概念作为节点,语义关系作为边。此外,每个节点通常最多只对应一个词,一个多词实体将被表示为一个节点列表,这些节点通过名称和连接运算符边相连。考虑到预训练实体表示自然地有意事件论元抽取,在事件语义和结构预训练期间,合并这些列表为单个结点表示多单词实体。给定无监督语料库中的一个句子s,经过AMR解析器得到它的AMR图 g s = ( V s , E s ) g_s=(V_s,E_s) gs=(Vs,Es) V s V_s Vs是单词合并之后的结点集, E s E_s Es为边集, E s = { ( u , v , r ) ∣ ( u , v ) ∈ V s × V s , r ∈ R } E_s=\{(u,v,r)|(u,v)\in{V_s×V_s,r{\in}R}\} Es={(u,v,r)(u,v)Vs×Vs,rR},其中R为定义的语义关系类型集合。

3.2 事件语义预训练

采用一个预训练语言模型作为文本编码器并对其进行训练,目的是区分各种触发词-论元对。

3.2.1 文本编码器

给定一个包含n个token的句子 s = { w 1 , w 2 , . . . , w n } s=\{w_1,w_2,...,w_n\} s={w1,w2,...,wn},接入多层的Transformer,使用最后一层的隐藏向量作为token表示。此外,一个结点 v ∈ V s v \in{V_s} vVs可能对应一个多token文本区间,在预训练中结点需要一个统一的表示。插入两个特殊的标记符[E1]和[/E1]为区间的开始和结束。使用[E1]的隐藏向量作为结点v的区间表示 x v x_v xv,对于不同的结点使用不同的标记符对。从训练过的通用预训练模型开始预训练,以获得通用的语言理解能力。

3.2.2 触发词-论元对辨别

设计触发词-论元对的辨别作为事件语义预训练的对比预训练任务,基本思想是学习相同事件的单词比不相关单词有更近的表示。可以注意到AMR结构是完全相似事件中的触发词-论元对,因此可以使用这些单词对作为正样本,训练文本编码器从负样本中辨别它们。
P s = { ( u , v ) ∣ ∃ ( u , v , r ) ∈ E s , r ∈ R p } P_s=\{(u,v)| {\exists}(u,v,r){\in}E_s,r{\in}R_p\} Ps={(u,v)(u,v,r)Es,rRp}为句子s中触发词-论元对的正样本集合,其中 R p = { A R G , t i m e , l o c a t i o n } R_p=\{ARG,time,location\} Rp={ARG,time,location}。对于一个具体的正样本对 ( t , a ) ∈ P s (t,a){\in}P_s (t,a)Ps,通过触发词替换和论元替换构建它对应的负样本。

  • 在触发词替换阶段,通过随机采样 m t m_t mt个负样本触发词 t ^ ∈ V s \widehat{t}{\in}V_s t Vs和正样本论元a,构建 m t m_t mt个负样本对。负样本触发词 t ^ \widehat{t} t 没有到a的有向边(ARG, time,location)。
  • 在论元替换阶段,通过随机采样 m a m_a ma个负样本论元 a ^ ∈ V s \widehat{a}{\in}V_s a Vs,构建 m a m_a ma个负样本对。

一个正样本对(t,a)的损失函数如下,其中W是一个学习相似性度量的可训练矩阵。
在这里插入图片描述
一个mini-batch B s B_s Bs的损失函数如下:
在这里插入图片描述

3.3 事件结构预训练

先前的工作展示事件相关的结构可以帮助抽取新的事件和发现、生成新的事件模式。因此,构建图结构预训练,使用GNN作为图编码器,学习可转移的事件相关的结构表示。具体地,在AMR子图辨别任务上预训练图编码器。

3.3.1 图编码器

给一个图g,图编码器表示它为 g = g ( g , x v ) g=g(g,{x_v}) g=g(g,xv),其中g(·)为图编码器, { x v } \{x_v\} {xv}为接入图编码器的初始结点表示。CLEVE对图编码器的具体结构是无关的,因此使用sota的GNN模型,Graph Isomorphism Network。使用预训练文本编码器产生的对应文本区间的表示 { x v } \{x_v\} {xv}作为图编码器的初始结点表示。这种节点初始化也隐式地对齐了 CLEVE 中事件语义和结构表示的语义空间,从而可以使它们更好地协作。

3.3.2 AMR子图辨别

基本思想是通过将它们与从其他AMR图采样的子图区分开来学习从同一AMR图采样的子图的相似表示。给定M个AMR图 g 1 , g 2 , . . . , g m {g_1,g_2,...,g_m} g1,g2,...,gm,每个图对应无监督语料库中的一个句子,对于第i个图 g i g_i gi,从中随机采样两个子图得到一个正样本对 a 2 i − 1 a_{2i-1} a2i1 a 2 i a_{2i} a2i,从mini-batch中其他AMR图采样的其他子图作为负样本,使用图编码器表示样本 a i = g ( a i , x v ) a_i=g(a_i,x_v) ai=g(ai,xv),损失函数如下:
在这里插入图片描述

4 实验

在监督的事件抽取和无监督自由的事件抽取中评测模型

4.1 预训练设置

使用New York Times语料作为CLEVE的无监督预训练语料,为了防止数据泄露,从NYT语料库中移除ACE 2005的全部文章。 文本编码器使用RoBERTa,从发布的checkpoint开始事件语义预训练。图编码器使用graph isomorphism network,从头开始预训练。

4.2 CLEVE的改写

因为当前任务集中于预训练而不是对于事件抽取的微调,使用简单和通用的技术使预先训练的CLEVE适应下游的事件抽取任务(获得词表示然后分类)。

  • 在监督情况下,对文本编码器使用动态多池化机制和使用图编码器编码相应的局部子图,结合这两种表示作为特征,在监督数据集上微调CLEVE。
  • 在无监督自由情况下,直接使用预训练的CLEVE生成的表示作为所需的触发器/论元语义表示和事件结构表示。

4.3 监督事件抽取

数据集使用ACE 2005和MAVEN,MAVEN仅能评测事件检测。在两个子任务上评估事件抽取的表现:
事件检测(ED)和事件论元抽取(EAE)。实验结果如下:
在这里插入图片描述
在这里插入图片描述

4.4 无监督自由的事件抽取

在无监督情形下,在ACE 2005和MAVEN上使用客观的自动度量和人工评估对CLEVE进行评估。

  • 对于自动度量,使用外部聚类评估指标:B-Cubed Metrics,包括B-Cuded P、R和F1。B-Cubed Metrics通过将聚类结果与真实标准注释进行比较来评估聚类结果的质量。
  • 对于人工评估,邀请一名专家检查模型的输出,评估提取的事件是否完整且正确聚集,以及是否发现文本中的所有事件。
    自动度量的实验结果如下图,
    在这里插入图片描述
    在这里插入图片描述
    人工评测的结果如下图:
    在这里插入图片描述
    通过在不同比例的随机采样MAVEN训练数据上比较事件检测效果,实验结果如下图,可以发现CLEVE对低资源的事件抽取任务有很大帮助。
    在这里插入图片描述
    不同AMR解析器的实验结果如下,可以发现一个更好的AMR解析器可以带来更好的事件抽取表现,但是,这些提升不如相应的AMR性能改进那么显著,这表明CLEVE通常对AMR解析中的错误具有鲁棒性。
    在这里插入图片描述
    在NYT和英文Wikipedia进行预训练,CLEVE的监督事件抽取表现如下,可以发现在相似领域上(ACE 2005对应NYT,MAVEN对应Wikipedia)预训练会使CLEVE在相应的数据集上受益。在ACE 2005上,尽管Wikipedia是NYT的2.28倍,但对其进行预训练的CLEVE表现不如在NYT上进行预训练的CLEVE(均在新闻领域)。可以看到领域内的收益主要来自事件语义而不是CLEVE框架中的结构,这表明可以为CLEVE开发专注于语义的域适应技术。在这里插入图片描述

5 总结

  • 提出CLEVE,一个事件抽取的对比预训练框架,利用大型无监督数据中丰富的事件知识。
  • 在监督和无监督自由的事件抽取中,均得到了显著地提升。
  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hlee-top

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值