Python和PyTorch对比实现池化层MaxPool函数及反向传播

该博客通过对比纯Python和PyTorch,详细介绍了如何实现池化层的MaxPool函数,并探讨了相关反向传播的过程。同时,提供了相关资源链接以深入理解池化层的原理和公式推导。
摘要由CSDN通过智能技术生成

摘要

本文使用纯 Python 和 PyTorch 对比实现 MaxPool 函数及其反向传播.

相关

原理和详细解释, 请参考文章 :

池化层MaxPool函数详解及反向传播的公式推导

系列文章索引 :
https://blog.csdn.net/oBrightLamp/article/details/85067981

正文

import torch
import numpy as np


class MaxPool2D:
    def __init__(self, kernel_size=(2, 2), stride=2):
        self.stride = stride

        self.kernel_size = kernel_size
        self.w_height = kernel_size[0]
        self.w_width = kernel_size[1]

        self.x = None

        self.in_height = None
        self.in_width = None

        self.out_height = None
        self.out_width = None

        self.arg_max = None

    def __call__(self, x):
        self.x = x
        self.in_height = np.shape(x)[0]
        self.in_width = np.shape
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值