LangChain的提示词仓库的使用入门

文章介绍了如何在Python中利用LangChain库中的LLMChain和不同提示库,如question-answer-pair和aspect-basedsentimentanalysis,进行问题解答和情感分析。还展示了如何设置DASHSCOPE_API_KEY并针对南油小学进行地理位置查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

hub 地址: https://smith.langchain.com/hub?ref=blog.langchain.dev

以下返回有关深圳的qa对 。

llm使用的千问,需要去官方申请 API KEY 。


!pip install langchain langchainhub dashscope
from langchain.chains import LLMChain
from langchain_community.llms import Tongyi
from langchain import hub
import os

prompt1 = hub.pull("homanp/question-answer-pair")
os.environ["DASHSCOPE_API_KEY"] = "sk-cc1c8314fdbd43ceaf26ec1824d5dd3b"
llm = Tongyi()

chain_one = LLMChain(
    llm=llm,
    prompt=prompt1,
    verbose=
### 如何在Linux服务器上安装Conda及其基本用法 #### 安装Miniconda或Anaconda 为了在Linux服务器上安装Conda,可以选择安装Miniconda或者完整的Anaconda发行版。对于大多数用户来说,推荐先尝试Miniconda,因为它只包含了`conda`包管理和环境管理工具以及Python本身。 下载并运行适合Linux系统的脚本文件来完成安装过程[^1]: ```bash wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh ``` 按照提示操作直到结束,在此期间可以接受默认设置或将路径自定义到所需位置。完成后重启终端使更改生效。 #### 验证安装成功与否 通过命令验证是否正确安装了Conda: ```bash conda --version ``` 如果显示版本号,则说明安装无误;否则可能需要重新配置环境变量PATH以包含新安装的Conda目录下的bin子目录。 #### 创建和激活虚拟环境 创建一个新的独立于其他项目的虚拟工作区是非常重要的实践之一。这可以通过下面的方式实现: ```bash conda create --name myenv python=3.x # 将"x"替换为目标Python版本号 conda activate myenv # 激活新建的环境 ``` 在此之后就可以在这个特定环境中自由地添加所需的库而不会影响全局系统中的软件包集合。 #### 使用pip或conda安装第三方库 当处于某个活动状态下的conda环境下时,可以直接利用内置的支持功能轻松获取各种流行的数据科学框架和其他依赖项。例如要安装LangChain这样的项目,既可以用官方支持的方法也能借助外部渠道如PyPI仓库来进行部署[^2]: ```bash conda install -c conda-forge langchain # 推荐方式 # 或者 pip install langchain # 可选方案 ``` 以上就是关于如何在Linux平台上快速入门Conda的一些指导信息。希望这些资料能够帮助顺利完成必要的准备工作!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值