论文阅读理解 - Deep Metric Learning via Lifted Structured Feature Embedding

Deep Metric Learning via Lifted Structured Feature Embedding

Paper

Caffe-Code

摘要 - 提出一种样本间距离度量方法,其出发点在于,(一)学习样本语义特征嵌入,使得在语义嵌入空间中,相似样本映射距离更接近,不相似样本映射距离更远. (二)更好的利用网络训练中 batch 训练的优势,提出将一个 batch 内样本的成对距离向量升级为成对距离矩阵(lifting the vector of pairwise distances within the batch to the matrix of pairwise distances). 问题被转化为了一个 multiclass label 问题.

1. Introduction

度量学习和降维技术,旨在学习语义距离度量和嵌入,以使相似的样本被映射为流形中邻近点,不相似的样本被映射为距离较远的点.

给定输入图像的标签标注信息,通过训练神经网络结构,直接学习输入图像到低维嵌入之间的非线性映射函数. 网络的优化目标是将不同类的样本间的距离变大,相同类的样本间的距离变小. 判别地训练的网络模型对特征表示和语义嵌入联合训练,对类间变化更加鲁棒.

现有方法不能充分利用网络 mini-batch SGD 训练中 training batches 的优势. 主要是首先随机采样 pairs 或 triplets,以构建 training batch,再对 training batch 中各独立的 pairs 或 triplets 计算 loss.

本文方法将 training batch 内的成对距离向量转化为成对距离矩阵,并设计一种新的结构化损失函数.

首先回顾了基于判别性网络训练来学习语义嵌入的方法.

1.1 Contrastive embedding

对比嵌入是在成对数据 (xi,xj,yij) ( x i , x j , y i j ) 上进行训练的.

contrastive training 最小化相同类别的成对样本间的距离,惩罚 negative 成对距离小于边缘参数 α α .

代价函数[1,2]定义:

J=1mm/2(i,j)yi,jD2i,j+(1yi,j)[αDi,j]2+ J = 1 m ∑ ( i , j ) m / 2 y i , j D i , j 2 + ( 1 − y i , j ) [ α − D i , j ] + 2

其中,

m m - batch 内图片数,即batchsize.

f ( ) - 网络输出的特征嵌入.

Di,j=||f(xi)f(xi)||2 D i , j = | | f ( x i ) − f ( x i ) | | 2

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Part I Metric Searching in a Nutshell Overview 3 1. FOUNDATIONS OF METRIC SPACE SEARCHING 5 1 The Distance Searching Problem 6 2 The Metric Space 8 3 Distance Measures 9 3.1 Minkowski Distances 10 3.2 Quadratic Form Distance 11 3.3 Edit Distance 12 3.4 Tree Edit Distance 13 3.5 Jaccard’s Coefficient 13 3.6 Hausdorff Distance 14 3.7 Time Complexity 14 4 Similarity Queries 15 4.1 Range Query 15 4.2 Nearest Neighbor Query 16 4.3 Reverse Nearest Neighbor Query 17 4.4 Similarity Join 17 4.5 Combinations of Queries 18 4.6 Complex Similarity Queries 18 5 Basic Partitioning Principles 20 5.1 Ball Partitioning 20 5.2 Generalized Hyperplane Partitioning 21 5.3 Excluded Middle Partitioning 21 5.4 Extensions 21 6 Principles of Similarity Query Execution 22 6.1 Basic Strategies 22 6.2 Incremental Similarity Search 25 7 Policies for Avoiding Distance Computations 26 7.1 Explanatory Example 27 7.2 Object-Pivot Distance Constraint 28 7.3 Range-Pivot Distance Constraint 30 7.4 Pivot-Pivot Distance Constraint 31 7.5 Double-Pivot Distance Constraint 33 7.6 Pivot Filtering 34 8 Metric Space Transformations 35 8.1 Metric Hierarchies 36 8.1.1 Lower-Bounding Functions 36 8.2 User-Defined Metric Functions 38 8.2.1 Searching Using Lower-Bounding Functions 38 8.3 Embedding Metric Space 39 8.3.1 Embedding Examples 39 8.3.2 Reducing Dimensionality 40 9 Approximate Similarity Search 41 9.1 Principles 41 9.2 Generic Algorithms 44 9.3 Measures of Performance 46 9.3.1 Improvement in Efficiency 46 9.3.2 Precision and Recall 46 9.3.3 Relative Error on Distances 48 9.3.4 Position Error 49 10 Advanced Issues 50 10.1 Statistics on Metric Datasets 51 10.1.1 Distribution and Density Functions 51 10.1.2 Distance Distribution and Density 52 10.1.3 Homogeneity of Viewpoints 54 10.2 Proximity of Ball Regions 55 10.3 Performance Prediction 58 Contents ix 10.4 Tree Quality Measures 60 10.5 Choosing Reference Points 63 2. SURVEY OF EXISTING APPROACHES 67 1 Ball Partitioning Methods 67 1.1 Burkhard-Keller Tree 68 1.2 Fixed Queries Tree 69 1.3 Fixed Queries Array 70 1.4 Vantage Point Tree 72 1.4.1 Multi-Way Vantage Point Tree 74 1.5 Excluded Middle Vantage Point Forest 75 2 Generalized Hyperplane Partitioning Approaches 76 2.1 Bisector Tree 76 2.2 Generalized Hyperplane Tree 77 3 Exploiting Pre-Computed Distances 78 3.1 AESA 78 3.2 Linear AESA 79 3.3 Other Methods 80 4 Hybrid Indexing Approaches 81 4.1 Multi Vantage Point Tree 81 4.2 Geometric Near-neighbor Access Tree 82 4.3 Spatial Approximation Tree 85 4.4 M-tree 87 4.5 Similarity Hashing 88 5 Approximate Similarity Search 89 5.1 Exploiting Space Transformations 89 5.2 Approximate Nearest Neighbors with BBD Trees 90 5.3 Angle Property Technique 92 5.4 Clustering for Indexing 94 5.5 Vector Quantization Index 95 5.6 Buoy Indexing 97 5.7 Hierarchical Decomposition of Metric Spaces 97 5.7.1 Relative Error Approximation 98 5.7.2 Good Fraction Approximation 98 5.7.3 Small Chance Improvement Approximation 98 5.7.4 Proximity-Based Approximation 99 5.7.5 PAC Nearest Neighbor Search 99 x SIMILARITY SEARCH Part II Metric Searching in Large Collections of Data Overview 103 3. CENTRALIZED INDEX STRUCTURES 105 1 M-tree Family 105 1.1 The M-tree 105 1.2 Bulk-Loading Algorithm of M-tree 109 1.3 Multi-Way Insertion Algorithm 112 1.4 The Slim Tree 113 1.4.1 Slim-Down Algorithm 114 1.4.2 Generalized Slim-Down Algorithm 116 1.5 Pivoting M-tree 118 1.6 The M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值