代码:
MPC_Test.m
% 清屏
clear;
close all;
clc;
% 第一步,定义状态空间矩阵
% 定义状态矩阵 A, n*n 矩阵
A = [1 0.1; -1 2];
n = size(A,1);
% 定义输入矩阵 B, n*p 矩阵
B = [0.2 1;0.5 2];
p = size(B,2);
% 定义Q矩阵,n*n 矩阵
Q = [100 0;0 1];
% 定义F矩阵,n*n 矩阵
F = [100 0;0 1];
% 定义R矩阵,p*p 矩阵
R = [1 0;0 0.1];
% 定义step数量k
k_steps = 100;
% 定义矩阵 X_K, n*k 矩 阵
X_K = zeros(n,k_steps);
% 初始状态变量值, n*1 向量
X_K(:,1) = [20;-20];
% 定义输入矩阵 U_K, p*k 矩阵
U_K = zeros(p,k_steps);
% 定义预测区间K
N = 5;
% Call MPC_Matrices 函数 求得 E,H矩阵
[E,H] = MPC_Matrices(A,B,Q,R,F,N);
% 计算每一步的状态变量的值
for k = 1 : k_steps
% 求得U_K(:,k)
U_K(:,k) = Prediction(X_K(:,k),E,H,N,p);
% 计算第k+1步时状态变量的值
X_K(:,k+1) = (A*X_K(:,k) + B*U_K(:,k));
end
% 绘制状态变量和输入的变化
subplot(2, 1, 1);
hold;
for i = 1 : size(X_K,1)
plot(X_K(i,:));
end
legend("x1","x2")
hold off;
subplot(2, 1, 2);
hold;
for i = 1 : size(U_K,1)
plot(U_K(i,:));
end
MPC_Matrices.m
function [E,H] = MPC_Matrices(A,B,Q,R,F,N)
n=size(A,1); % A是n*n矩阵,得到n
p=size(B,2); % B是n*p矩阵,得到p
M=[eye(n);zeros(N*n,n)]; % 初始化M矩阵,M矩阵是(N+1)n*n的,
% 它上面是n*n个"I",这一步先把下半部分写成0
C=zeros((N+1)*n,N*p); % 初始化C矩阵,这一步令它有(N+1)n*NP个0
% 定义M和C
tmp=eye(n); % 定义一个n*n 的 I 矩阵
% 更新M和C
for i=1:N % 循环,i从1到N
rows =i*n+(1:n); %定义当前行数,从i*n开始,共n行
C(rows,:)=[tmp*B,C(rows-n, 1:end-p)]; %将c矩阵填满
tmp= A*tmp; %每一次将tmp左乘一次A
M(rows,:)=tmp; %将M矩阵写满
end
% 定义Q_bar和R_bar
Q_bar = kron(eye(N),Q);
Q_bar = blkdiag(Q_bar,F);
R_bar = kron(eye(N),R);
% 计算G,E,H
G=M'*Q_bar*M; % G: n*n
E=C'*Q_bar*M; % E: NP*n
H=C'*Q_bar*C+R_bar; % NP*NP
Prediction.m
function u_k= Prediction(x_k,E,H,N,p)
U_k = zeros(N*p,1); % NP x 1
U_k = quadprog(H,E*x_k);
u_k = U_k(1:p,1); % 取第一个结果
end
结果: