小明系列故事——捉迷藏 HDU - 4528 (标记 四种状态,也可以说是四种状态下的最小步数,很好的题)

  小明的妈妈生了三个孩子,老大叫大明, 老二叫二明, 老三..., 老三自然就叫小明了。
  一天,小明的妈妈带小明兄弟三人去公园玩耍,公园里面树木很多,有很多地方可以藏身, 于是他们决定玩捉迷藏。经过几轮的猜拳后,第一轮是小明来找其他两个人,游戏规则很简单:
  只要小明可以在规定的时间内找到他们就算小明获胜,并且被发现的两个人猜拳决定谁在下一轮负责找人;如果在规定的时间内只找到一个人,那么没有被发现的人获胜,被找到的人下一轮负责找人;如果在规定的时间内一个人都没有找到,则小明失败了,下一轮还是他来找人。现在小明想知道,在规定时间内,自己是否可以找到所有的人,现在他想请你来帮忙计算一下。 
  为了简单起见,把公园看成是n行m列的矩阵,其中’S’表示小明,’D’表示大名,’E’表示二明,’X’表示障碍物,’.’表示通路。这里,我们把发现定义为,可以直接看到对方, 也就是说两个人在同一行或者同一列,并且中间没有障碍物或者没有其他人就可以看到对方。并且假设,大明,二明藏好以后就不会再改变位置,小明每个单位时间可以从当前的位置走到相邻的四个位置之一,并且不会走出公园。 
Input测试数据第一行是一个正整数T,表示有T组测试数据。 
每一组测试数据首先是三个正整数n,m,t,分别表示行数、列数和规定的时间,接下来n行,每行m个上述的字符,并且保证有且只有一个’S’,一个’E’,一个’D’。 

[Technical Specification] 
T < 200 
3 <= n, m <= 100 
0 <= t <= 100 
Output每组先输出一行Case c:(c表示当前的组数,从1开始计数); 
接下来一行,如果小明可以在规定时间内找到所有的人,则输出最少需要的时间,否则输出-1。
Sample Input
3
5 6 3
XXD...
....E.
....X.
....S.
......
5 6 3
XDX...
....E.
......
....S.
......
5 6 8
XXDX..
.XEX..
......
....S.
......
Sample Output
Case 1:
-1
Case 2:
3
Case 3:
-1

题意:让小明找 大明和 二明,这道题是只要看到就算找到了;

思路:开始的思路: 不标记状态,只是标记这个点有没有走过,定义结构体 记录走到这个点已经找到几个人,
很明显错了,因为走到这个点时,前面的路径不一样;例如这个点可以看到 E,但是走到这个点时,已经被标记;

 而前面已经找到D了,这样就不能在最短时间找到完两个人了; 所以我们要标记状态;

 dp[i][j][0] 走到这个点时,一个人没有找的最小步数;
dp[i][j][1] 走到这个点时,找大明D的最少步数;
dp[i][j][2] 走到这个点时,找到二明E的最小步数;
dp[i][j][3] 走到这个点时,找到两个人的最小步数; 
其实在想想 第一次到达这个状态时,也一定就是最小步数了; 

但是我还是标记了状态;

代码:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#include<queue>
#define INF 0x3f3f3f3f
#define Max 110
// 如果你不标记状态,只是标记这个点有没有走过,定义结构体 记录走到这个点已经找到几个人,
// 很明显错了,因为走到这个点时,前面的路径不一样;例如这个点可以看到 E,但是走到这个点时,已经被标记;
// 而前面已经找到D了,这样就不能在最短时间找到完两个人了;
// 所以我们要标记状态; 
int dp[Max][Max][4]; // 
// dp[i][j][0] 走到这个点时,一个人没有找的最小步数;
// dp[i][j][1] 走到这个点时,找大明D的最少步数;
// dp[i][j][2] 走到这个点时,找到二明E的最小步数;
// dp[i][j][3] 走到这个点时,找到两个人的最小步数; 
//  其实在想想 第一次到达这个状态时,也一定就是最小步数了; 
// 但是我还是标记了状态; 
int vis[Max][Max];   // 在这个点能看到几个人; 
char str[Max][Max];
int bk[Max][Max];

int a[4][2] = {0,-1,1,0,0,1,-1,0};
struct node
{
	int x,y;
	int step;
	int ss;
};
int sy,sx;
int n,m,limit;
int bfs()
{
	queue<node >q;
	node tt;
	tt.x = sx;
	tt.y = sy;
	tt.step = 0;
	tt.ss = vis[sy][sx];
	q.push(tt);
	dp[sy][sx][tt.ss] = tt.step;
	if(dp[sy][sx][3]!=INF) return tt.step;
	while(!q.empty())
	{
		node star = q.front();
		q.pop();
		for(int i = 0;i<4;i++)
		{
			int tx = star.x + a[i][0];
			int ty = star.y  + a[i][1];
			if(tx>=0&&ty>=0&&tx<n&&ty<m&&(str[ty][tx]=='.'||str[ty][tx]=='S')&&star.step<limit)
			{
				int k;
				if(star.ss!=vis[ty][tx])
					 k = star.ss + vis[ty][tx];
				else k = star.ss;
				if(k>=3)
					k = 3;
				if(dp[ty][tx][k]<=star.step+1)  // 等于的时候也一定要 不要在重新搜了 
					continue;
				node end;
				end.x = tx;
				end.y = ty;
				end.step = star.step + 1;
				end.ss = k;
				if(k>=3)
					return end.step;
				dp[ty][tx][star.ss] = end.step;
				if(k!=star.ss)
					dp[ty][tx][k] = end.step;	
				
				q.push(end);
			}
		}
	}
	return -1;
}

void fff(int y,int x,int val)
{
	int i,j;
	int book[4];
	memset(book,0,sizeof(book));
	int f = 0;
	int k = max(n,m);
	for(j = 1;j<=n;j++)
	{
		f = 0;
		for(i = 0;i<4;i++)
		{
			if(book[i]) continue;
			f = 1;
			int tx = x + j*a[i][0];
			int ty = y + j*a[i][1];
			if(tx<0||ty<0||tx>=n||ty>=m||str[ty][tx]=='E'||str[ty][tx]=='X'||str[ty][tx]=='D')
			{
				book[i] = 1;
				continue;
			}
			else if(str[ty][tx]=='S')
			{
				book[i] = 1;
				vis[ty][tx] +=val;
			} 
			else
				vis[ty][tx] += val; 
		}
		if(!f) break;
	}
	
}


int main()
{
	int i,j,t;
	scanf("%d",&t);
	
	for(int num = 1;num<=t;num++)
	{
		scanf("%d%d%d",&m,&n,&limit);
		int x1,y1,x2,y2;
		for(i = 0;i<m;i++)
		{
			scanf("%s",str[i]);	
			for(j = 0;j<n;j++)
			{
				if(str[i][j]=='S')
				{
					sy = i;
					sx = j;
				}
				else if(str[i][j] =='D')
				{
					y1 = i;
					x1 = j;
				}
				else if(str[i][j]=='E')
				{
					y2 = i;
					x2 = j;
				}
			}
		}
		
		
		memset(vis,0,sizeof(vis));
		memset(dp,INF,sizeof(dp));
		fff(y1,x1,1);
		fff(y2,x2,2);	
		printf("Case %d:\n",num);
		printf("%d\n",bfs());	
	}
	return 0;
} 


阅读更多
个人分类: 搜索 bfs 搜索 dfs
上一篇0和5 51Nod - 1433 (为什么整除找出一个最大的整数能整除3或者9,为什么)
下一篇Making the Grade POJ - 3666 (dp 离散化 变成 非严格单调递增 或递减)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭